Ontology type: schema:ScholarlyArticle
2008-11
AUTHORSRobert M. Brucker, Reid N. Harris, Christian R. Schwantes, Thomas N. Gallaher, Devon C. Flaherty, Brianna A. Lam, Kevin P. C. Minbiole
ABSTRACTDisease has spurred declines in global amphibian populations. In particular, the fungal pathogen Batrachochytrium dendrobatidis has decimated amphibian diversity in some areas unaffected by habitat loss. However, there is little evidence to explain how some amphibian species persist despite infection or even clear the pathogen beyond detection. One hypothesis is that certain bacterial symbionts on the skin of amphibians inhibit the growth of the pathogen. An antifungal strain of Janthinobacterium lividum, isolated from the skin of the red-backed salamander Plethodon cinereus, produces antifungal metabolites at concentrations lethal to B. dendrobatidis. Antifungal metabolites were identified by using reversed phase high performance liquid chromatography, high resolution mass spectrometry, nuclear magnetic resonance, and UV-Vis spectroscopy and tested for efficacy of inhibiting the pathogen. Two metabolites, indole-3-carboxaldehyde and violacein, inhibited the pathogen's growth at relatively low concentrations (68.9 and 1.82 microM, respectively). Analysis of fresh salamander skin confirmed the presence of J. lividum and its metabolites on the skin of host salamanders in concentrations high enough to hinder or kill the pathogen (51 and 207 microM, respectively). These results support the hypothesis that cutaneous, mutualistic bacteria play a role in amphibian resistance to fungal disease. Exploitation of this biological process may provide long-term resistance to B. dendrobatidis for vulnerable amphibians and serve as a model for managing future emerging diseases in wildlife populations. More... »
PAGES1422-1429
http://scigraph.springernature.com/pub.10.1007/s10886-008-9555-7
DOIhttp://dx.doi.org/10.1007/s10886-008-9555-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1043720487
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/18949519
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Microbiology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Antifungal Agents",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chromatography, High Pressure Liquid",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chromobacterium",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chytridiomycota",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Dermatomycoses",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gram-Negative Bacterial Infections",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Indoles",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Oxalobacteraceae",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Skin",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Urodela",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "James Madison University",
"id": "https://www.grid.ac/institutes/grid.258041.a",
"name": [
"Department of Chemistry and Biochemistry, James Madison University, 22807, Harrisonburg, VA, USA",
"Department of Biology, James Madison University, 22807, Harrisonburg, VA, USA"
],
"type": "Organization"
},
"familyName": "Brucker",
"givenName": "Robert M.",
"id": "sg:person.01335623341.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335623341.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "James Madison University",
"id": "https://www.grid.ac/institutes/grid.258041.a",
"name": [
"Department of Biology, James Madison University, 22807, Harrisonburg, VA, USA"
],
"type": "Organization"
},
"familyName": "Harris",
"givenName": "Reid N.",
"id": "sg:person.0731557014.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731557014.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "James Madison University",
"id": "https://www.grid.ac/institutes/grid.258041.a",
"name": [
"Department of Chemistry and Biochemistry, James Madison University, 22807, Harrisonburg, VA, USA"
],
"type": "Organization"
},
"familyName": "Schwantes",
"givenName": "Christian R.",
"id": "sg:person.01263110511.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263110511.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "James Madison University",
"id": "https://www.grid.ac/institutes/grid.258041.a",
"name": [
"Department of Chemistry and Biochemistry, James Madison University, 22807, Harrisonburg, VA, USA"
],
"type": "Organization"
},
"familyName": "Gallaher",
"givenName": "Thomas N.",
"id": "sg:person.01006617301.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006617301.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "James Madison University",
"id": "https://www.grid.ac/institutes/grid.258041.a",
"name": [
"Department of Biology, James Madison University, 22807, Harrisonburg, VA, USA"
],
"type": "Organization"
},
"familyName": "Flaherty",
"givenName": "Devon C.",
"id": "sg:person.01054732501.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054732501.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "James Madison University",
"id": "https://www.grid.ac/institutes/grid.258041.a",
"name": [
"Department of Biology, James Madison University, 22807, Harrisonburg, VA, USA"
],
"type": "Organization"
},
"familyName": "Lam",
"givenName": "Brianna A.",
"id": "sg:person.01017015666.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015666.96"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "James Madison University",
"id": "https://www.grid.ac/institutes/grid.258041.a",
"name": [
"Department of Chemistry and Biochemistry, James Madison University, 22807, Harrisonburg, VA, USA"
],
"type": "Organization"
},
"familyName": "Minbiole",
"givenName": "Kevin P. C.",
"id": "sg:person.01212367510.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212367510.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1046/j.1523-1739.1999.97185.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001608389"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/jmor.10039",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004230054"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev.ecolsys.30.1.235",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009980806"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1890/060122",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011384897"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ismej.2007.110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012103762",
"https://doi.org/10.1038/ismej.2007.110"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1097-0282(1998)47:6<435::aid-bip3>3.0.co;2-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012225455"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.biocon.2007.05.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012573234"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1469-1795.2007.00130.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014141278"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10393-005-0009-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025177570",
"https://doi.org/10.1007/s10393-005-0009-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10393-005-0009-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025177570",
"https://doi.org/10.1007/s10393-005-0009-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0506889103",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030127616"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.95.15.9031",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030141333"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/14786410412331272040",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030606741"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10886-007-9352-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031709206",
"https://doi.org/10.1007/s10886-007-9352-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0006-291x(02)02217-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034249757"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4319/lo.1979.24.4.0715",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034736915"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/20014091096747",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036205678"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1890/04-1428",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040963036"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0002744",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041621436"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrmicro1129",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046219278",
"https://doi.org/10.1038/nrmicro1129"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrmicro1129",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046219278",
"https://doi.org/10.1038/nrmicro1129"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrmicro1129",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046219278",
"https://doi.org/10.1038/nrmicro1129"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1890/0012-9658(2006)87[1671:eidaap]2.0.co;2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046313988"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1748-1090.2007.00010.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052523447"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/jf990685q",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055931596"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/jf990685q",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055931596"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1103538",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062451065"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1119744",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062452731"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1643/0045-8511(2007)2007[630:ccbfte]2.0.co;2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068175612"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-11",
"datePublishedReg": "2008-11-01",
"description": "Disease has spurred declines in global amphibian populations. In particular, the fungal pathogen Batrachochytrium dendrobatidis has decimated amphibian diversity in some areas unaffected by habitat loss. However, there is little evidence to explain how some amphibian species persist despite infection or even clear the pathogen beyond detection. One hypothesis is that certain bacterial symbionts on the skin of amphibians inhibit the growth of the pathogen. An antifungal strain of Janthinobacterium lividum, isolated from the skin of the red-backed salamander Plethodon cinereus, produces antifungal metabolites at concentrations lethal to B. dendrobatidis. Antifungal metabolites were identified by using reversed phase high performance liquid chromatography, high resolution mass spectrometry, nuclear magnetic resonance, and UV-Vis spectroscopy and tested for efficacy of inhibiting the pathogen. Two metabolites, indole-3-carboxaldehyde and violacein, inhibited the pathogen's growth at relatively low concentrations (68.9 and 1.82 microM, respectively). Analysis of fresh salamander skin confirmed the presence of J. lividum and its metabolites on the skin of host salamanders in concentrations high enough to hinder or kill the pathogen (51 and 207 microM, respectively). These results support the hypothesis that cutaneous, mutualistic bacteria play a role in amphibian resistance to fungal disease. Exploitation of this biological process may provide long-term resistance to B. dendrobatidis for vulnerable amphibians and serve as a model for managing future emerging diseases in wildlife populations.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10886-008-9555-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.3073241",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1082730",
"issn": [
"0098-0331",
"1573-1561"
],
"name": "Journal of Chemical Ecology",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "34"
}
],
"name": "Amphibian Chemical Defense: Antifungal Metabolites of the Microsymbiont Janthinobacterium lividum on the Salamander Plethodon cinereus",
"pagination": "1422-1429",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"d041b9f31da4eb4db012e0b7e865fd35b0997c4bca87a07c25bf5a896516884e"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"18949519"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"7505563"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10886-008-9555-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1043720487"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10886-008-9555-7",
"https://app.dimensions.ai/details/publication/pub.1043720487"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T20:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000515.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10886-008-9555-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10886-008-9555-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10886-008-9555-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10886-008-9555-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10886-008-9555-7'
This table displays all metadata directly associated to this object as RDF triples.
237 TRIPLES
21 PREDICATES
65 URIs
32 LITERALS
20 BLANK NODES