Ontology type: schema:ScholarlyArticle
2006-07
AUTHORS ABSTRACTIn these lectures we shall concentrate on some topics on the theory of incompressible fluids. In particular, we shall discuss the vorticity equations in 2D and 3D, the dynamic of point vertices, the bi-normal equation (modeling the motion of a self-interaction vortex filament), and the system for the interaction of nearly parallel vortex filaments deduced by Klein, Majda and Damodaran. We explain some of the results obtained by Kenig, Ponce and Vega concerning the existence of explicit solutions for this system as well as the stability of somespecial configurations. More... »
PAGES551-575
http://scigraph.springernature.com/pub.10.1007/s10884-006-9018-1
DOIhttp://dx.doi.org/10.1007/s10884-006-9018-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014128775
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of California, Santa Barbara",
"id": "https://www.grid.ac/institutes/grid.133342.4",
"name": [
"Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA"
],
"type": "Organization"
},
"familyName": "Ponce",
"givenName": "Gustavo",
"id": "sg:person.011310113454.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310113454.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4684-0082-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024382521",
"https://doi.org/10.1007/978-1-4684-0082-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-0082-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024382521",
"https://doi.org/10.1007/978-1-4684-0082-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-9290-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034210020",
"https://doi.org/10.1007/978-1-4684-9290-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-9290-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034210020",
"https://doi.org/10.1007/978-1-4684-9290-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0169-5983(96)82495-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037033632"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-003-0983-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045520365",
"https://doi.org/10.1007/s00220-003-0983-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0022112095001121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053947577"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0022112098003772",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054006039"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0022112072002307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054046527"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0022112072002307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054046527"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0022112072002307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054046527"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1761268",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057816330"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-07",
"datePublishedReg": "2006-07-01",
"description": "In these lectures we shall concentrate on some topics on the theory of incompressible fluids. In particular, we shall discuss the vorticity equations in 2D and 3D, the dynamic of point vertices, the bi-normal equation (modeling the motion of a self-interaction vortex filament), and the system for the interaction of nearly parallel vortex filaments deduced by Klein, Majda and Damodaran. We explain some of the results obtained by Kenig, Ponce and Vega concerning the existence of explicit solutions for this system as well as the stability of somespecial configurations.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10884-006-9018-1",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136016",
"issn": [
"1040-7294",
"1572-9222"
],
"name": "Journal of Dynamics and Differential Equations",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "18"
}
],
"name": "On the Stability of Nearly Parallel Vortex Filaments",
"pagination": "551-575",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"434f1dce5f330766f722b9e283e85fe271bdff4d5b8cd99116beb4945cb0dcfb"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10884-006-9018-1"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014128775"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10884-006-9018-1",
"https://app.dimensions.ai/details/publication/pub.1014128775"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T17:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000487.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s10884-006-9018-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10884-006-9018-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10884-006-9018-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10884-006-9018-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10884-006-9018-1'
This table displays all metadata directly associated to this object as RDF triples.
88 TRIPLES
21 PREDICATES
35 URIs
19 LITERALS
7 BLANK NODES