Analytic Classification of Foliations Induced by Germs of Holomorphic Vector Fields in (ℂn,0) with Non-isolated Singularities View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-12

AUTHORS

L. Ortiz-Bobadilla, E. Rosales-González, S. M. Voronin

ABSTRACT

We consider germs of holomorphic vector fields in (ℂn,0), n ≥ 3, with non-isolated singularities. We assume that the set of singular points forms a submanifold of codimension 2, and the sum of the nonzero eigenvalues of the linearization of the germs at each singular point is zero. We give the orbital analytic classification of generic germs of such type. It happens that, unlike the formal classification (which is trivial), the analytic one has functional moduli. The same result is obtained in the real-analytic case (the smooth normalization was obtained earlier in Roussarie Astérisque. 1975;30:1–181). More... »

PAGES

1-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10883-019-09436-7

DOI

http://dx.doi.org/10.1007/s10883-019-09436-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112703243


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Autonomous University of Mexico", 
          "id": "https://www.grid.ac/institutes/grid.9486.3", 
          "name": [
            "Instituto de Matem\u00e1ticas, Universidad Nacional Aut\u00f3noma de M\u00e9xico, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ortiz-Bobadilla", 
        "givenName": "L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Autonomous University of Mexico", 
          "id": "https://www.grid.ac/institutes/grid.9486.3", 
          "name": [
            "Instituto de Matem\u00e1ticas, Universidad Nacional Aut\u00f3noma de M\u00e9xico, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosales-Gonz\u00e1lez", 
        "givenName": "E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chelyabinsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77728.3d", 
          "name": [
            "Departament of Mathematics, Chelyabinsk State University, Chelyabinsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voronin", 
        "givenName": "S. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0081543810010177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003882558", 
          "https://doi.org/10.1134/s0081543810010177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543810010177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003882558", 
          "https://doi.org/10.1134/s0081543810010177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10883-012-9137-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014129415", 
          "https://doi.org/10.1007/s10883-012-9137-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-008-9043-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015043062", 
          "https://doi.org/10.1007/s10958-008-9043-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.2000.3908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040294159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10883-008-9041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043139949", 
          "https://doi.org/10.1007/s10883-008-9041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10883-008-9041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043139949", 
          "https://doi.org/10.1007/s10883-008-9041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01084817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044300457", 
          "https://doi.org/10.1007/bf01084817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01084817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044300457", 
          "https://doi.org/10.1007/bf01084817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm1984v049n01abeh002700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058200244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm2008v199n04abeh003935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058202411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm2009v200n03abeh004001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058202472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5427/jsing.2016.14j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072842729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.1393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084407964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.1462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084408041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-1289-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089506019", 
          "https://doi.org/10.1007/978-94-010-1289-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/advsov/014/02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/advsov/014/04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0147-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705430", 
          "https://doi.org/10.1007/978-1-4684-0147-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0147-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705430", 
          "https://doi.org/10.1007/978-1-4684-0147-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-12", 
    "datePublishedReg": "2019-03-12", 
    "description": "We consider germs of holomorphic vector fields in (\u2102n,0), n \u2265 3, with non-isolated singularities. We assume that the set of singular points forms a submanifold of codimension 2, and the sum of the nonzero eigenvalues of the linearization of the germs at each singular point is zero. We give the orbital analytic classification of generic germs of such type. It happens that, unlike the formal classification (which is trivial), the analytic one has functional moduli. The same result is obtained in the real-analytic case (the smooth normalization was obtained earlier in Roussarie Ast\u00e9risque. 1975;30:1\u2013181).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10883-019-09436-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6746007", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052643", 
        "issn": [
          "1079-2724", 
          "1573-8698"
        ], 
        "name": "Journal of Dynamical and Control Systems", 
        "type": "Periodical"
      }
    ], 
    "name": "Analytic Classification of Foliations Induced by Germs of Holomorphic Vector Fields in (\u2102n,0) with Non-isolated Singularities", 
    "pagination": "1-26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "390db6745310fbf345356540e08128a9f7da5da3eea110c399bbb41f3101889b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10883-019-09436-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112703243"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10883-019-09436-7", 
      "https://app.dimensions.ai/details/publication/pub.1112703243"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127448_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10883-019-09436-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10883-019-09436-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10883-019-09436-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10883-019-09436-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10883-019-09436-7'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10883-019-09436-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nced94e12745e4dbbb1a825427702aabe
4 schema:citation sg:pub.10.1007/978-1-4684-0147-9
5 sg:pub.10.1007/978-94-010-1289-8_2
6 sg:pub.10.1007/bf01084817
7 sg:pub.10.1007/s10883-008-9041-0
8 sg:pub.10.1007/s10883-012-9137-4
9 sg:pub.10.1007/s10958-008-9043-1
10 sg:pub.10.1134/s0081543810010177
11 https://doi.org/10.1006/jdeq.2000.3908
12 https://doi.org/10.1070/sm1984v049n01abeh002700
13 https://doi.org/10.1070/sm2008v199n04abeh003935
14 https://doi.org/10.1070/sm2009v200n03abeh004001
15 https://doi.org/10.1090/advsov/014/02
16 https://doi.org/10.1090/advsov/014/04
17 https://doi.org/10.1090/mmono/110
18 https://doi.org/10.1090/mmono/113
19 https://doi.org/10.2307/1970051
20 https://doi.org/10.24033/asens.1393
21 https://doi.org/10.24033/asens.1462
22 https://doi.org/10.5427/jsing.2016.14j
23 schema:datePublished 2019-03-12
24 schema:datePublishedReg 2019-03-12
25 schema:description We consider germs of holomorphic vector fields in (ℂn,0), n ≥ 3, with non-isolated singularities. We assume that the set of singular points forms a submanifold of codimension 2, and the sum of the nonzero eigenvalues of the linearization of the germs at each singular point is zero. We give the orbital analytic classification of generic germs of such type. It happens that, unlike the formal classification (which is trivial), the analytic one has functional moduli. The same result is obtained in the real-analytic case (the smooth normalization was obtained earlier in Roussarie Astérisque. 1975;30:1–181).
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1052643
30 schema:name Analytic Classification of Foliations Induced by Germs of Holomorphic Vector Fields in (ℂn,0) with Non-isolated Singularities
31 schema:pagination 1-26
32 schema:productId N3b73093c2e014234b73fbea9fc733cd2
33 N5b10bf597f5d45919c11e7141c83f865
34 N95e80137274b45b4a307fbd65263edb7
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112703243
36 https://doi.org/10.1007/s10883-019-09436-7
37 schema:sdDatePublished 2019-04-11T11:43
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Na7d8f6a36b2d40d6b37eddd4a85ce260
40 schema:url https://link.springer.com/10.1007%2Fs10883-019-09436-7
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N39c13d04edfc4cdabbef3c098c347f12 rdf:first Nb1db601e1e5141608a77cc02853b9f20
45 rdf:rest rdf:nil
46 N3b73093c2e014234b73fbea9fc733cd2 schema:name readcube_id
47 schema:value 390db6745310fbf345356540e08128a9f7da5da3eea110c399bbb41f3101889b
48 rdf:type schema:PropertyValue
49 N5b10bf597f5d45919c11e7141c83f865 schema:name dimensions_id
50 schema:value pub.1112703243
51 rdf:type schema:PropertyValue
52 N77bb06db32fe437eb8d2c7d2242a2a85 schema:affiliation https://www.grid.ac/institutes/grid.9486.3
53 schema:familyName Ortiz-Bobadilla
54 schema:givenName L.
55 rdf:type schema:Person
56 N8c3b092100f24bc798ab064026b2d149 rdf:first Nf0fe138f7f81498c9625f09051b8b015
57 rdf:rest N39c13d04edfc4cdabbef3c098c347f12
58 N95e80137274b45b4a307fbd65263edb7 schema:name doi
59 schema:value 10.1007/s10883-019-09436-7
60 rdf:type schema:PropertyValue
61 Na7d8f6a36b2d40d6b37eddd4a85ce260 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nb1db601e1e5141608a77cc02853b9f20 schema:affiliation https://www.grid.ac/institutes/grid.77728.3d
64 schema:familyName Voronin
65 schema:givenName S. M.
66 rdf:type schema:Person
67 Nced94e12745e4dbbb1a825427702aabe rdf:first N77bb06db32fe437eb8d2c7d2242a2a85
68 rdf:rest N8c3b092100f24bc798ab064026b2d149
69 Nf0fe138f7f81498c9625f09051b8b015 schema:affiliation https://www.grid.ac/institutes/grid.9486.3
70 schema:familyName Rosales-González
71 schema:givenName E.
72 rdf:type schema:Person
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:grant.6746007 http://pending.schema.org/fundedItem sg:pub.10.1007/s10883-019-09436-7
80 rdf:type schema:MonetaryGrant
81 sg:journal.1052643 schema:issn 1079-2724
82 1573-8698
83 schema:name Journal of Dynamical and Control Systems
84 rdf:type schema:Periodical
85 sg:pub.10.1007/978-1-4684-0147-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705430
86 https://doi.org/10.1007/978-1-4684-0147-9
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-94-010-1289-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089506019
89 https://doi.org/10.1007/978-94-010-1289-8_2
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01084817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044300457
92 https://doi.org/10.1007/bf01084817
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s10883-008-9041-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043139949
95 https://doi.org/10.1007/s10883-008-9041-0
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10883-012-9137-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014129415
98 https://doi.org/10.1007/s10883-012-9137-4
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10958-008-9043-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015043062
101 https://doi.org/10.1007/s10958-008-9043-1
102 rdf:type schema:CreativeWork
103 sg:pub.10.1134/s0081543810010177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003882558
104 https://doi.org/10.1134/s0081543810010177
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1006/jdeq.2000.3908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040294159
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1070/sm1984v049n01abeh002700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058200244
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1070/sm2008v199n04abeh003935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058202411
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1070/sm2009v200n03abeh004001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058202472
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1090/advsov/014/02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567744
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1090/advsov/014/04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567746
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1090/mmono/110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567886
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1090/mmono/113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567889
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2307/1970051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675398
123 rdf:type schema:CreativeWork
124 https://doi.org/10.24033/asens.1393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084407964
125 rdf:type schema:CreativeWork
126 https://doi.org/10.24033/asens.1462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084408041
127 rdf:type schema:CreativeWork
128 https://doi.org/10.5427/jsing.2016.14j schema:sameAs https://app.dimensions.ai/details/publication/pub.1072842729
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.77728.3d schema:alternateName Chelyabinsk State University
131 schema:name Departament of Mathematics, Chelyabinsk State University, Chelyabinsk, Russia
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.9486.3 schema:alternateName National Autonomous University of Mexico
134 schema:name Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico City, Mexico
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...