Privileged Coordinates and Nilpotent Approximation for Carnot Manifolds, II. Carnot Coordinates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

Woocheol Choi, Raphaël Ponge

ABSTRACT

This paper is a sequel of Choi and Ponge (J Dyn Control Syst 25:109–157, 2019) and deals with privileged coordinates and nilpotent approximation of Carnot manifolds. By a Carnot manifold, it is meant a manifold equipped with a filtration by subbundles of the tangent bundle which is compatible with the Lie bracket of vector fields. In this paper, we single out a special class of privileged coordinates in which the nilpotent approximation at a given point of a Carnot manifold is given by its tangent group. We call these coordinates Carnot coordinates. Examples of Carnot coordinates include Darboux coordinates on contact manifolds and the canonical coordinates of the first kind of Goodman and Rothschild-Stein. By converting the privileged coordinate of Bellaïche into Carnot coordinates, we obtain an effective construction of Carnot coordinates, which we call ε-Carnot coordinates. They form the building block of all systems of Carnot coordinates. On a graded nilpotent Lie group, they are given by the group law of the group. For general Carnot manifolds, they depend smoothly on the base point. Moreover, in Carnot coordinates at a given point, they are osculated in a very precise manner by the group law of the tangent group at the point. More... »

PAGES

1-40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10883-019-09434-9

DOI

http://dx.doi.org/10.1007/s10883-019-09434-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112852282


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law and Legal Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Incheon National University", 
          "id": "https://www.grid.ac/institutes/grid.412977.e", 
          "name": [
            "Department of Mathematics Education, Incheon National University, Incheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Woocheol", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan University", 
          "id": "https://www.grid.ac/institutes/grid.13291.38", 
          "name": [
            "School of Mathematics, Sichuan University, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ponge", 
        "givenName": "Rapha\u00ebl", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02791539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003524765", 
          "https://doi.org/10.1007/bf02791539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02791539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003524765", 
          "https://doi.org/10.1007/bf02791539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004012778", 
          "https://doi.org/10.1007/bf02392539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004980661", 
          "https://doi.org/10.1007/bf02392419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160270403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006293609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160270403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006293609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605307608820018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013620413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0087594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021104880", 
          "https://doi.org/10.1007/bfb0087594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0087594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021104880", 
          "https://doi.org/10.1007/bfb0087594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01307214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051002881", 
          "https://doi.org/10.1007/bf01307214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01307214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051002881", 
          "https://doi.org/10.1007/bf01307214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0328050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1033050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062863179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2006.227.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2006.227.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/kjm/1250523814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083509978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214439462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10883-018-9404-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104513107", 
          "https://doi.org/10.1007/s10883-018-9404-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.difgeo.2018.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110096838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.difgeo.2018.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110096838"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-18", 
    "datePublishedReg": "2019-03-18", 
    "description": "This paper is a sequel of Choi and Ponge (J Dyn Control Syst 25:109\u2013157, 2019) and deals with privileged coordinates and nilpotent approximation of Carnot manifolds. By a Carnot manifold, it is meant a manifold equipped with a filtration by subbundles of the tangent bundle which is compatible with the Lie bracket of vector fields. In this paper, we single out a special class of privileged coordinates in which the nilpotent approximation at a given point of a Carnot manifold is given by its tangent group. We call these coordinates Carnot coordinates. Examples of Carnot coordinates include Darboux coordinates on contact manifolds and the canonical coordinates of the first kind of Goodman and Rothschild-Stein. By converting the privileged coordinate of Bella\u00efche into Carnot coordinates, we obtain an effective construction of Carnot coordinates, which we call \u03b5-Carnot coordinates. They form the building block of all systems of Carnot coordinates. On a graded nilpotent Lie group, they are given by the group law of the group. For general Carnot manifolds, they depend smoothly on the base point. Moreover, in Carnot coordinates at a given point, they are osculated in a very precise manner by the group law of the tangent group at the point.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10883-019-09434-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7482383", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052643", 
        "issn": [
          "1079-2724", 
          "1573-8698"
        ], 
        "name": "Journal of Dynamical and Control Systems", 
        "type": "Periodical"
      }
    ], 
    "name": "Privileged Coordinates and Nilpotent Approximation for Carnot Manifolds, II. Carnot Coordinates", 
    "pagination": "1-40", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49f80f6732120d6e20bf08eec1f5299e7fa02f06319589bd052faabe46b56846"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10883-019-09434-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112852282"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10883-019-09434-9", 
      "https://app.dimensions.ai/details/publication/pub.1112852282"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54008_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10883-019-09434-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10883-019-09434-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10883-019-09434-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10883-019-09434-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10883-019-09434-9'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      38 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10883-019-09434-9 schema:about anzsrc-for:18
2 anzsrc-for:1801
3 schema:author N381bee5bac0c4188966a26c8295db626
4 schema:citation sg:pub.10.1007/bf01307214
5 sg:pub.10.1007/bf02392419
6 sg:pub.10.1007/bf02392539
7 sg:pub.10.1007/bf02791539
8 sg:pub.10.1007/bfb0087594
9 sg:pub.10.1007/s10883-018-9404-0
10 https://doi.org/10.1002/cpa.3160270403
11 https://doi.org/10.1016/j.difgeo.2018.11.002
12 https://doi.org/10.1080/03605307608820018
13 https://doi.org/10.1137/0328050
14 https://doi.org/10.1137/1033050
15 https://doi.org/10.1215/kjm/1250523814
16 https://doi.org/10.2140/pjm.2006.227.151
17 https://doi.org/10.4310/jdg/1214439462
18 schema:datePublished 2019-03-18
19 schema:datePublishedReg 2019-03-18
20 schema:description This paper is a sequel of Choi and Ponge (J Dyn Control Syst 25:109–157, 2019) and deals with privileged coordinates and nilpotent approximation of Carnot manifolds. By a Carnot manifold, it is meant a manifold equipped with a filtration by subbundles of the tangent bundle which is compatible with the Lie bracket of vector fields. In this paper, we single out a special class of privileged coordinates in which the nilpotent approximation at a given point of a Carnot manifold is given by its tangent group. We call these coordinates Carnot coordinates. Examples of Carnot coordinates include Darboux coordinates on contact manifolds and the canonical coordinates of the first kind of Goodman and Rothschild-Stein. By converting the privileged coordinate of Bellaïche into Carnot coordinates, we obtain an effective construction of Carnot coordinates, which we call ε-Carnot coordinates. They form the building block of all systems of Carnot coordinates. On a graded nilpotent Lie group, they are given by the group law of the group. For general Carnot manifolds, they depend smoothly on the base point. Moreover, in Carnot coordinates at a given point, they are osculated in a very precise manner by the group law of the tangent group at the point.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf sg:journal.1052643
25 schema:name Privileged Coordinates and Nilpotent Approximation for Carnot Manifolds, II. Carnot Coordinates
26 schema:pagination 1-40
27 schema:productId N1fd807c7a7854a8c97b335988db4381b
28 N25edcef92a474b11bc0efd37a2949589
29 N6749b2041ade41b1888f2d432af29f83
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112852282
31 https://doi.org/10.1007/s10883-019-09434-9
32 schema:sdDatePublished 2019-04-11T12:14
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N099def9a4ea44047a53f8c050d112865
35 schema:url https://link.springer.com/10.1007%2Fs10883-019-09434-9
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N099def9a4ea44047a53f8c050d112865 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N1fd807c7a7854a8c97b335988db4381b schema:name doi
42 schema:value 10.1007/s10883-019-09434-9
43 rdf:type schema:PropertyValue
44 N25edcef92a474b11bc0efd37a2949589 schema:name dimensions_id
45 schema:value pub.1112852282
46 rdf:type schema:PropertyValue
47 N28169f04137b4396a9abe57da232e1f1 schema:affiliation https://www.grid.ac/institutes/grid.412977.e
48 schema:familyName Choi
49 schema:givenName Woocheol
50 rdf:type schema:Person
51 N381bee5bac0c4188966a26c8295db626 rdf:first N28169f04137b4396a9abe57da232e1f1
52 rdf:rest Nda993b96563d4c998d3b9e5ab60f5d5a
53 N5ca661502662400790d8a9db4ba6610d schema:affiliation https://www.grid.ac/institutes/grid.13291.38
54 schema:familyName Ponge
55 schema:givenName Raphaël
56 rdf:type schema:Person
57 N6749b2041ade41b1888f2d432af29f83 schema:name readcube_id
58 schema:value 49f80f6732120d6e20bf08eec1f5299e7fa02f06319589bd052faabe46b56846
59 rdf:type schema:PropertyValue
60 Nda993b96563d4c998d3b9e5ab60f5d5a rdf:first N5ca661502662400790d8a9db4ba6610d
61 rdf:rest rdf:nil
62 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
63 schema:name Law and Legal Studies
64 rdf:type schema:DefinedTerm
65 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Law
67 rdf:type schema:DefinedTerm
68 sg:grant.7482383 http://pending.schema.org/fundedItem sg:pub.10.1007/s10883-019-09434-9
69 rdf:type schema:MonetaryGrant
70 sg:journal.1052643 schema:issn 1079-2724
71 1573-8698
72 schema:name Journal of Dynamical and Control Systems
73 rdf:type schema:Periodical
74 sg:pub.10.1007/bf01307214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051002881
75 https://doi.org/10.1007/bf01307214
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02392419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004980661
78 https://doi.org/10.1007/bf02392419
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf02392539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004012778
81 https://doi.org/10.1007/bf02392539
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02791539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003524765
84 https://doi.org/10.1007/bf02791539
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bfb0087594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021104880
87 https://doi.org/10.1007/bfb0087594
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s10883-018-9404-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104513107
90 https://doi.org/10.1007/s10883-018-9404-0
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1002/cpa.3160270403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006293609
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.difgeo.2018.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110096838
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1080/03605307608820018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013620413
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1137/0328050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844225
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1137/1033050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062863179
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1215/kjm/1250523814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083509978
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2140/pjm.2006.227.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069071595
105 rdf:type schema:CreativeWork
106 https://doi.org/10.4310/jdg/1214439462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459514
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.13291.38 schema:alternateName Sichuan University
109 schema:name School of Mathematics, Sichuan University, Chengdu, China
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.412977.e schema:alternateName Incheon National University
112 schema:name Department of Mathematics Education, Incheon National University, Incheon, South Korea
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...