Zero Level Perturbation of a Certain Third-Order Linear Solvable ODE with an Irregular Singularity at the Origin of Poincaré Rank ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Tsvetana Stoyanova

ABSTRACT

We study an irregular singularity of Poincaré rank 1 at the origin of a certain third-order linear solvable homogeneous ODE. We perturb the equation by introducing a small parameter ε∈(ℝ+,0) (ε < 1), which causes the splitting of the irregular singularity into two finite Fuchsian singularities. We show that when the solutions of the perturbed equation contain logarithmic terms, the Stokes matrices of the initial equation are limits of the part of the monodromy matrices around the finite resonant Fuchsian singularities of the perturbed equation. More... »

PAGES

511-539

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10883-018-9401-3

DOI

http://dx.doi.org/10.1007/s10883-018-9401-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103857290


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sofia University", 
          "id": "https://www.grid.ac/institutes/grid.11355.33", 
          "name": [
            "Department of Mathematics and Informatics, Sofia University, 5 J. Bourchier Blvd., 1164, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoyanova", 
        "givenName": "Tsvetana", 
        "id": "sg:person.012635346466.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012635346466.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1022888516938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004010100", 
          "https://doi.org/10.1023/a:1022888516938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021744801409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005898487", 
          "https://doi.org/10.1023/a:1021744801409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10883-015-9290-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821505", 
          "https://doi.org/10.1007/s10883-015-9290-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10883-015-9290-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821505", 
          "https://doi.org/10.1007/s10883-015-9290-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022157019", 
          "https://doi.org/10.1007/bfb0073564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022157019", 
          "https://doi.org/10.1007/bfb0073564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1560354707060056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027144592", 
          "https://doi.org/10.1134/s1560354707060056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/apm.2011.14031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027206767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1619/fesi.58.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031640384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2008.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038903739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044018817", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-90163-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044018817", 
          "https://doi.org/10.1007/978-3-322-90163-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-90163-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044018817", 
          "https://doi.org/10.1007/978-3-322-90163-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/22/9/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/22/9/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/27/5/1029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1996.176.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069070409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812702395_0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096053221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098742406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12346-018-0269-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100552788", 
          "https://doi.org/10.1007/s12346-018-0269-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "We study an irregular singularity of Poincar\u00e9 rank 1 at the origin of a certain third-order linear solvable homogeneous ODE. We perturb the equation by introducing a small parameter \u03b5\u2208(\u211d+,0) (\u03b5 < 1), which causes the splitting of the irregular singularity into two finite Fuchsian singularities. We show that when the solutions of the perturbed equation contain logarithmic terms, the Stokes matrices of the initial equation are limits of the part of the monodromy matrices around the finite resonant Fuchsian singularities of the perturbed equation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10883-018-9401-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052643", 
        "issn": [
          "1079-2724", 
          "1573-8698"
        ], 
        "name": "Journal of Dynamical and Control Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Zero Level Perturbation of a Certain Third-Order Linear Solvable ODE with an Irregular Singularity at the Origin of Poincar\u00e9 Rank 1", 
    "pagination": "511-539", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ece4a446fce20b7e99494d6c2fa6cb5814aa00e27c75fb564ae5ddee7acb5a2d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10883-018-9401-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103857290"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10883-018-9401-3", 
      "https://app.dimensions.ai/details/publication/pub.1103857290"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113661_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10883-018-9401-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10883-018-9401-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10883-018-9401-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10883-018-9401-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10883-018-9401-3'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10883-018-9401-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na2dec0b08296437dbbde4c0e76fb01bb
4 schema:citation sg:pub.10.1007/978-3-322-90163-7
5 sg:pub.10.1007/bfb0073564
6 sg:pub.10.1007/s10883-015-9290-7
7 sg:pub.10.1007/s12346-018-0269-0
8 sg:pub.10.1023/a:1021744801409
9 sg:pub.10.1023/a:1022888516938
10 sg:pub.10.1134/s1560354707060056
11 https://app.dimensions.ai/details/publication/pub.1044018817
12 https://doi.org/10.1016/j.jde.2008.02.012
13 https://doi.org/10.1088/0951-7715/22/9/008
14 https://doi.org/10.1088/0951-7715/27/5/1029
15 https://doi.org/10.1090/gsm/086
16 https://doi.org/10.1142/9789812702395_0002
17 https://doi.org/10.1619/fesi.58.177
18 https://doi.org/10.2140/pjm.1996.176.365
19 https://doi.org/10.4236/apm.2011.14031
20 schema:datePublished 2018-10
21 schema:datePublishedReg 2018-10-01
22 schema:description We study an irregular singularity of Poincaré rank 1 at the origin of a certain third-order linear solvable homogeneous ODE. We perturb the equation by introducing a small parameter ε∈(ℝ+,0) (ε < 1), which causes the splitting of the irregular singularity into two finite Fuchsian singularities. We show that when the solutions of the perturbed equation contain logarithmic terms, the Stokes matrices of the initial equation are limits of the part of the monodromy matrices around the finite resonant Fuchsian singularities of the perturbed equation.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N11af51bbbf4643bc8420733123d8e186
27 N38d672f008fa4b3faecd801be523f0ed
28 sg:journal.1052643
29 schema:name Zero Level Perturbation of a Certain Third-Order Linear Solvable ODE with an Irregular Singularity at the Origin of Poincaré Rank 1
30 schema:pagination 511-539
31 schema:productId N33e155d15bd84d88b81c631fe381a104
32 N5d16aaff87544e82940c2011152388f7
33 Na8f697066c9b43ddba2a5482ba85c857
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103857290
35 https://doi.org/10.1007/s10883-018-9401-3
36 schema:sdDatePublished 2019-04-11T10:34
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nfe42fa9af2c244cb9bca7a7dec0133e3
39 schema:url https://link.springer.com/10.1007%2Fs10883-018-9401-3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N11af51bbbf4643bc8420733123d8e186 schema:volumeNumber 24
44 rdf:type schema:PublicationVolume
45 N33e155d15bd84d88b81c631fe381a104 schema:name dimensions_id
46 schema:value pub.1103857290
47 rdf:type schema:PropertyValue
48 N38d672f008fa4b3faecd801be523f0ed schema:issueNumber 4
49 rdf:type schema:PublicationIssue
50 N5d16aaff87544e82940c2011152388f7 schema:name doi
51 schema:value 10.1007/s10883-018-9401-3
52 rdf:type schema:PropertyValue
53 Na2dec0b08296437dbbde4c0e76fb01bb rdf:first sg:person.012635346466.56
54 rdf:rest rdf:nil
55 Na8f697066c9b43ddba2a5482ba85c857 schema:name readcube_id
56 schema:value ece4a446fce20b7e99494d6c2fa6cb5814aa00e27c75fb564ae5ddee7acb5a2d
57 rdf:type schema:PropertyValue
58 Nfe42fa9af2c244cb9bca7a7dec0133e3 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
64 schema:name Pure Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1052643 schema:issn 1079-2724
67 1573-8698
68 schema:name Journal of Dynamical and Control Systems
69 rdf:type schema:Periodical
70 sg:person.012635346466.56 schema:affiliation https://www.grid.ac/institutes/grid.11355.33
71 schema:familyName Stoyanova
72 schema:givenName Tsvetana
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012635346466.56
74 rdf:type schema:Person
75 sg:pub.10.1007/978-3-322-90163-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044018817
76 https://doi.org/10.1007/978-3-322-90163-7
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bfb0073564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022157019
79 https://doi.org/10.1007/bfb0073564
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s10883-015-9290-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006821505
82 https://doi.org/10.1007/s10883-015-9290-7
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s12346-018-0269-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100552788
85 https://doi.org/10.1007/s12346-018-0269-0
86 rdf:type schema:CreativeWork
87 sg:pub.10.1023/a:1021744801409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005898487
88 https://doi.org/10.1023/a:1021744801409
89 rdf:type schema:CreativeWork
90 sg:pub.10.1023/a:1022888516938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004010100
91 https://doi.org/10.1023/a:1022888516938
92 rdf:type schema:CreativeWork
93 sg:pub.10.1134/s1560354707060056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027144592
94 https://doi.org/10.1134/s1560354707060056
95 rdf:type schema:CreativeWork
96 https://app.dimensions.ai/details/publication/pub.1044018817 schema:CreativeWork
97 https://doi.org/10.1016/j.jde.2008.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038903739
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1088/0951-7715/22/9/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109925
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1088/0951-7715/27/5/1029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110329
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1090/gsm/086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098742406
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1142/9789812702395_0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096053221
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1619/fesi.58.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031640384
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2140/pjm.1996.176.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069070409
110 rdf:type schema:CreativeWork
111 https://doi.org/10.4236/apm.2011.14031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027206767
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.11355.33 schema:alternateName Sofia University
114 schema:name Department of Mathematics and Informatics, Sofia University, 5 J. Bourchier Blvd., 1164, Sofia, Bulgaria
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...