Irreducibility of the Picard-Fuchs Equation Related to the Lotka-Volterra Polynomial x2y2(1 − x − y) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07

AUTHORS

Lubomir Gavrilov

ABSTRACT

We prove that the Zarisky closure of the monodromy group of the polynomial x2y2(1 − x − y) is the symplectic group Sp(4,ℂ). This shows that some previous results about this monodromy representation are wrong.

PAGES

425-438

References to SciGraph publications

  • 1989. Some Quadratic Systems with at most One Limit Cycle in DYNAMICS REPORTED
  • 2001. The Vanishing Topology of Non Isolated Singularities in NEW DEVELOPMENTS IN SINGULARITY THEORY
  • 2015-10. Melnikov Functions in Quadratic Perturbations of Generalized Lotka–Volterra Systems in JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS
  • Journal

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10883-017-9379-2

    DOI

    http://dx.doi.org/10.1007/s10883-017-9379-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091832399


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Toulouse", 
              "id": "https://www.grid.ac/institutes/grid.11417.32", 
              "name": [
                "Institut de Math\u00e9matiques de Toulouse, UMR 5219, Universit\u00e9 de Toulouse, CNRS UPS IMT, 31062, Toulouse Cedex 9, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gavrilov", 
            "givenName": "Lubomir", 
            "id": "sg:person.015677614627.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677614627.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1017/s0004972700016026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002573756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0004972700016026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002573756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10883-015-9282-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006076122", 
              "https://doi.org/10.1007/s10883-015-9282-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10883-015-9282-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006076122", 
              "https://doi.org/10.1007/s10883-015-9282-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-322-96657-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023725509", 
              "https://doi.org/10.1007/978-3-322-96657-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jdeq.1994.1049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023753545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0951-7715/24/2/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027001408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1922-1501189-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033621725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-0834-1_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034221465", 
              "https://doi.org/10.1007/978-94-010-0834-1_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-0834-1_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034221465", 
              "https://doi.org/10.1007/978-94-010-0834-1_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0396(87)90138-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042355314"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07", 
        "datePublishedReg": "2018-07-01", 
        "description": "We prove that the Zarisky closure of the monodromy group of the polynomial x2y2(1 \u2212 x \u2212 y) is the symplectic group Sp(4,\u2102). This shows that some previous results about this monodromy representation are wrong.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10883-017-9379-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052643", 
            "issn": [
              "1079-2724", 
              "1573-8698"
            ], 
            "name": "Journal of Dynamical and Control Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "name": "Irreducibility of the Picard-Fuchs Equation Related to the Lotka-Volterra Polynomial x2y2(1 \u2212 x \u2212 y)", 
        "pagination": "425-438", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1284315150fb651de6715ec80a3f477339881ed42edf1792322091cc06d43f45"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10883-017-9379-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091832399"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10883-017-9379-2", 
          "https://app.dimensions.ai/details/publication/pub.1091832399"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000528.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10883-017-9379-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10883-017-9379-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10883-017-9379-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10883-017-9379-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10883-017-9379-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    80 TRIPLES      20 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10883-017-9379-2 schema:author N5c86a7c2bdce4feaba1211db3b25b232
    2 schema:citation sg:pub.10.1007/978-3-322-96657-5_3
    3 sg:pub.10.1007/978-94-010-0834-1_18
    4 sg:pub.10.1007/s10883-015-9282-7
    5 https://doi.org/10.1006/jdeq.1994.1049
    6 https://doi.org/10.1016/0022-0396(87)90138-0
    7 https://doi.org/10.1017/s0004972700016026
    8 https://doi.org/10.1088/0951-7715/24/2/002
    9 https://doi.org/10.1090/s0002-9947-1922-1501189-9
    10 schema:datePublished 2018-07
    11 schema:datePublishedReg 2018-07-01
    12 schema:description We prove that the Zarisky closure of the monodromy group of the polynomial x2y2(1 − x − y) is the symplectic group Sp(4,ℂ). This shows that some previous results about this monodromy representation are wrong.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N72c94190dac04ff9bdb637b4281a46c4
    17 N7434bafefe034e76816f7670978c25f4
    18 sg:journal.1052643
    19 schema:name Irreducibility of the Picard-Fuchs Equation Related to the Lotka-Volterra Polynomial x2y2(1 − x − y)
    20 schema:pagination 425-438
    21 schema:productId N1f9d92283a994f6393a63017b13463c4
    22 Na398139f6f9d4b75a879787063fdd5d4
    23 Nda4276b132c946df83bdf8423cbec8e0
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091832399
    25 https://doi.org/10.1007/s10883-017-9379-2
    26 schema:sdDatePublished 2019-04-10T19:12
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N9756b2ef41d84e2ba652defeda4ea8f5
    29 schema:url http://link.springer.com/10.1007%2Fs10883-017-9379-2
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N1f9d92283a994f6393a63017b13463c4 schema:name dimensions_id
    34 schema:value pub.1091832399
    35 rdf:type schema:PropertyValue
    36 N5c86a7c2bdce4feaba1211db3b25b232 rdf:first sg:person.015677614627.81
    37 rdf:rest rdf:nil
    38 N72c94190dac04ff9bdb637b4281a46c4 schema:volumeNumber 24
    39 rdf:type schema:PublicationVolume
    40 N7434bafefe034e76816f7670978c25f4 schema:issueNumber 3
    41 rdf:type schema:PublicationIssue
    42 N9756b2ef41d84e2ba652defeda4ea8f5 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 Na398139f6f9d4b75a879787063fdd5d4 schema:name doi
    45 schema:value 10.1007/s10883-017-9379-2
    46 rdf:type schema:PropertyValue
    47 Nda4276b132c946df83bdf8423cbec8e0 schema:name readcube_id
    48 schema:value 1284315150fb651de6715ec80a3f477339881ed42edf1792322091cc06d43f45
    49 rdf:type schema:PropertyValue
    50 sg:journal.1052643 schema:issn 1079-2724
    51 1573-8698
    52 schema:name Journal of Dynamical and Control Systems
    53 rdf:type schema:Periodical
    54 sg:person.015677614627.81 schema:affiliation https://www.grid.ac/institutes/grid.11417.32
    55 schema:familyName Gavrilov
    56 schema:givenName Lubomir
    57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677614627.81
    58 rdf:type schema:Person
    59 sg:pub.10.1007/978-3-322-96657-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023725509
    60 https://doi.org/10.1007/978-3-322-96657-5_3
    61 rdf:type schema:CreativeWork
    62 sg:pub.10.1007/978-94-010-0834-1_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034221465
    63 https://doi.org/10.1007/978-94-010-0834-1_18
    64 rdf:type schema:CreativeWork
    65 sg:pub.10.1007/s10883-015-9282-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006076122
    66 https://doi.org/10.1007/s10883-015-9282-7
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1006/jdeq.1994.1049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023753545
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1016/0022-0396(87)90138-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042355314
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1017/s0004972700016026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002573756
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1088/0951-7715/24/2/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027001408
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1090/s0002-9947-1922-1501189-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033621725
    77 rdf:type schema:CreativeWork
    78 https://www.grid.ac/institutes/grid.11417.32 schema:alternateName University of Toulouse
    79 schema:name Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS UPS IMT, 31062, Toulouse Cedex 9, France
    80 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...