Approximation algorithms for the maximally balanced connected graph tripartition problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-02-17

AUTHORS

Guangting Chen, Yong Chen, Zhi-Zhong Chen, Guohui Lin, Tian Liu, An Zhang

ABSTRACT

Given a vertex-weighted connected graph G=(V,E,w(·))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E, w(\cdot ))$$\end{document}, the maximally balanced connected graphk-partition (k-BGP) seeks to partition the vertex set V into k non-empty parts such that the subgraph induced by each part is connected and the weights of these k parts are as balanced as possible. When the concrete objective is to maximize the minimum (to minimize the maximum, respectively) weight of the k parts, the problem is denoted as max–mink-BGP (min–maxk-BGP, respectively), and has received much study since about four decades ago. On general graphs, max–mink-BGP is strongly NP-hard for every fixed k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}, and remains NP-hard even for the vertex uniformly weighted case; when k is part of the input, the problem is denoted as max–min BGP, and cannot be approximated within 6/5 unless P =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} NP. In this paper, we study the tripartition problems from approximation algorithms perspective and present a 3/2-approximation for min–max 3-BGP and a 5/3-approximation for max–min 3-BGP, respectively. These are the first non-trivial approximation algorithms for 3-BGP, to our best knowledge. More... »

PAGES

1-21

References to SciGraph publications

  • 2019-11-23. Approximation Algorithms for Maximally Balanced Connected Graph Partition in COMBINATORIAL OPTIMIZATION AND APPLICATIONS
  • 2017-07-05. The Complexity of Tree Partitioning in ALGORITHMS AND DATA STRUCTURES
  • 2011. A 7/6-Approximation Algorithm for the Max-Min Connected Bipartition Problem on Grid Graphs in COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS
  • 1977-09. A homology theory for spanning tress of a graph in ACTA MATHEMATICA HUNGARICA
  • 2018-03-21. Efficient Algorithms for a Graph Partitioning Problem in FRONTIERS IN ALGORITHMICS
  • 2013-01-03. Max-min weight balanced connected partition in JOURNAL OF GLOBAL OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10878-020-00544-w

    DOI

    http://dx.doi.org/10.1007/s10878-020-00544-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1124916632


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Taizhou University, Linhai, China", 
              "id": "http://www.grid.ac/institutes/grid.440657.4", 
              "name": [
                "Department of Mathematics, Taizhou University, Linhai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Guangting", 
            "id": "sg:person.015270460302.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270460302.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.411963.8", 
              "name": [
                "Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Yong", 
            "id": "sg:person.010555136403.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555136403.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Information System Design, Tokyo Denki University, Saitama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.412773.4", 
              "name": [
                "Division of Information System Design, Tokyo Denki University, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Zhi-Zhong", 
            "id": "sg:person.015654265661.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computing Science, University of Alberta, Edmonton, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17089.37", 
              "name": [
                "Department of Computing Science, University of Alberta, Edmonton, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Guohui", 
            "id": "sg:person.01130357621.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130357621.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of EECS, Peking University, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "School of EECS, Peking University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Tian", 
            "id": "sg:person.011657527023.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011657527023.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.411963.8", 
              "name": [
                "Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "An", 
            "id": "sg:person.015273653637.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273653637.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-78455-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101647685", 
              "https://doi.org/10.1007/978-3-319-78455-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-24983-9_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035221403", 
              "https://doi.org/10.1007/978-3-642-24983-9_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-012-0028-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011271850", 
              "https://doi.org/10.1007/s10898-012-0028-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01896190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050830116", 
              "https://doi.org/10.1007/bf01896190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-36412-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123159174", 
              "https://doi.org/10.1007/978-3-030-36412-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-62127-2_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090338611", 
              "https://doi.org/10.1007/978-3-319-62127-2_4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-02-17", 
        "datePublishedReg": "2020-02-17", 
        "description": "Given a vertex-weighted connected graph G=(V,E,w(\u00b7))\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G = (V, E, w(\\cdot ))$$\\end{document}, the maximally balanced connected graphk-partition (k-BGP) seeks to partition the vertex set V into k non-empty parts such that the subgraph induced by each part is connected and the weights of these k parts are as balanced as possible. When the concrete objective is to maximize the minimum (to minimize the maximum, respectively) weight of the k parts, the problem is denoted as max\u2013mink-BGP (min\u2013maxk-BGP, respectively), and has received much study since about four decades ago. On general graphs, max\u2013mink-BGP is strongly NP-hard for every fixed k\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k \\ge 2$$\\end{document}, and remains NP-hard even for the vertex uniformly weighted case; when k is part of the input, the problem is denoted as max\u2013min BGP, and cannot be approximated within 6/5 unless P =\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$=$$\\end{document} NP. In this paper, we study the tripartition problems from approximation algorithms perspective and present a 3/2-approximation for min\u2013max 3-BGP and a 5/3-approximation for max\u2013min 3-BGP, respectively. These are the first non-trivial approximation algorithms for 3-BGP, to our best knowledge.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10878-020-00544-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8898306", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8124106", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7538013", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8132243", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1036683", 
            "issn": [
              "1382-6905", 
              "1573-2886"
            ], 
            "name": "Journal of Combinatorial Optimization", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "approximation algorithm", 
          "k parts", 
          "general graphs", 
          "max-min", 
          "non-trivial approximation", 
          "min-max", 
          "BGP", 
          "first non-trivial approximation", 
          "algorithm", 
          "graph", 
          "NPs", 
          "connected graph", 
          "concrete objectives", 
          "non-empty parts", 
          "minimum weight", 
          "subgraphs", 
          "vertices", 
          "problem", 
          "input", 
          "approximation", 
          "good knowledge", 
          "part", 
          "knowledge", 
          "objective", 
          "decades", 
          "weight", 
          "cases", 
          "study", 
          "paper"
        ], 
        "name": "Approximation algorithms for the maximally balanced connected graph tripartition problem", 
        "pagination": "1-21", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1124916632"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10878-020-00544-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10878-020-00544-w", 
          "https://app.dimensions.ai/details/publication/pub.1124916632"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_865.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10878-020-00544-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10878-020-00544-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10878-020-00544-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10878-020-00544-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10878-020-00544-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      22 PREDICATES      60 URIs      44 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10878-020-00544-w schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 anzsrc-for:0103
    5 schema:author N5ef6d0f4a420446a9e240d17bdf9bfda
    6 schema:citation sg:pub.10.1007/978-3-030-36412-0_11
    7 sg:pub.10.1007/978-3-319-62127-2_4
    8 sg:pub.10.1007/978-3-319-78455-7_3
    9 sg:pub.10.1007/978-3-642-24983-9_19
    10 sg:pub.10.1007/bf01896190
    11 sg:pub.10.1007/s10898-012-0028-8
    12 schema:datePublished 2020-02-17
    13 schema:datePublishedReg 2020-02-17
    14 schema:description Given a vertex-weighted connected graph G=(V,E,w(·))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E, w(\cdot ))$$\end{document}, the maximally balanced connected graphk-partition (k-BGP) seeks to partition the vertex set V into k non-empty parts such that the subgraph induced by each part is connected and the weights of these k parts are as balanced as possible. When the concrete objective is to maximize the minimum (to minimize the maximum, respectively) weight of the k parts, the problem is denoted as max–mink-BGP (min–maxk-BGP, respectively), and has received much study since about four decades ago. On general graphs, max–mink-BGP is strongly NP-hard for every fixed k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}, and remains NP-hard even for the vertex uniformly weighted case; when k is part of the input, the problem is denoted as max–min BGP, and cannot be approximated within 6/5 unless P =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} NP. In this paper, we study the tripartition problems from approximation algorithms perspective and present a 3/2-approximation for min–max 3-BGP and a 5/3-approximation for max–min 3-BGP, respectively. These are the first non-trivial approximation algorithms for 3-BGP, to our best knowledge.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf sg:journal.1036683
    19 schema:keywords BGP
    20 NPs
    21 algorithm
    22 approximation
    23 approximation algorithm
    24 cases
    25 concrete objectives
    26 connected graph
    27 decades
    28 first non-trivial approximation
    29 general graphs
    30 good knowledge
    31 graph
    32 input
    33 k parts
    34 knowledge
    35 max-min
    36 min-max
    37 minimum weight
    38 non-empty parts
    39 non-trivial approximation
    40 objective
    41 paper
    42 part
    43 problem
    44 study
    45 subgraphs
    46 vertices
    47 weight
    48 schema:name Approximation algorithms for the maximally balanced connected graph tripartition problem
    49 schema:pagination 1-21
    50 schema:productId N5bc46635798749ce808110ecb3676224
    51 N879cb99e066446c6b7b96fc5cc3e9ddc
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124916632
    53 https://doi.org/10.1007/s10878-020-00544-w
    54 schema:sdDatePublished 2022-05-20T07:38
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N9c29c9fd6490484db81ece404242b36f
    57 schema:url https://doi.org/10.1007/s10878-020-00544-w
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N1c3157e672c3412f8d004aed438fffde rdf:first sg:person.010555136403.19
    62 rdf:rest N4778e5f2b86844c79407fa20ad96bf5e
    63 N26bae3cd5541494a999ba7606734e2a6 rdf:first sg:person.015273653637.29
    64 rdf:rest rdf:nil
    65 N4778e5f2b86844c79407fa20ad96bf5e rdf:first sg:person.015654265661.98
    66 rdf:rest Nc21e03dedfda465fafa53a3d36400d67
    67 N5bc46635798749ce808110ecb3676224 schema:name doi
    68 schema:value 10.1007/s10878-020-00544-w
    69 rdf:type schema:PropertyValue
    70 N5ef6d0f4a420446a9e240d17bdf9bfda rdf:first sg:person.015270460302.04
    71 rdf:rest N1c3157e672c3412f8d004aed438fffde
    72 N879cb99e066446c6b7b96fc5cc3e9ddc schema:name dimensions_id
    73 schema:value pub.1124916632
    74 rdf:type schema:PropertyValue
    75 N9c29c9fd6490484db81ece404242b36f schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 Nc21e03dedfda465fafa53a3d36400d67 rdf:first sg:person.01130357621.02
    78 rdf:rest Nfc86e4c2f9614712be17f6bbdf2d5c08
    79 Nfc86e4c2f9614712be17f6bbdf2d5c08 rdf:first sg:person.011657527023.31
    80 rdf:rest N26bae3cd5541494a999ba7606734e2a6
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Pure Mathematics
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Applied Mathematics
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Numerical and Computational Mathematics
    92 rdf:type schema:DefinedTerm
    93 sg:grant.7538013 http://pending.schema.org/fundedItem sg:pub.10.1007/s10878-020-00544-w
    94 rdf:type schema:MonetaryGrant
    95 sg:grant.8124106 http://pending.schema.org/fundedItem sg:pub.10.1007/s10878-020-00544-w
    96 rdf:type schema:MonetaryGrant
    97 sg:grant.8132243 http://pending.schema.org/fundedItem sg:pub.10.1007/s10878-020-00544-w
    98 rdf:type schema:MonetaryGrant
    99 sg:grant.8898306 http://pending.schema.org/fundedItem sg:pub.10.1007/s10878-020-00544-w
    100 rdf:type schema:MonetaryGrant
    101 sg:journal.1036683 schema:issn 1382-6905
    102 1573-2886
    103 schema:name Journal of Combinatorial Optimization
    104 schema:publisher Springer Nature
    105 rdf:type schema:Periodical
    106 sg:person.010555136403.19 schema:affiliation grid-institutes:grid.411963.8
    107 schema:familyName Chen
    108 schema:givenName Yong
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555136403.19
    110 rdf:type schema:Person
    111 sg:person.01130357621.02 schema:affiliation grid-institutes:grid.17089.37
    112 schema:familyName Lin
    113 schema:givenName Guohui
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130357621.02
    115 rdf:type schema:Person
    116 sg:person.011657527023.31 schema:affiliation grid-institutes:grid.11135.37
    117 schema:familyName Liu
    118 schema:givenName Tian
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011657527023.31
    120 rdf:type schema:Person
    121 sg:person.015270460302.04 schema:affiliation grid-institutes:grid.440657.4
    122 schema:familyName Chen
    123 schema:givenName Guangting
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270460302.04
    125 rdf:type schema:Person
    126 sg:person.015273653637.29 schema:affiliation grid-institutes:grid.411963.8
    127 schema:familyName Zhang
    128 schema:givenName An
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273653637.29
    130 rdf:type schema:Person
    131 sg:person.015654265661.98 schema:affiliation grid-institutes:grid.412773.4
    132 schema:familyName Chen
    133 schema:givenName Zhi-Zhong
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98
    135 rdf:type schema:Person
    136 sg:pub.10.1007/978-3-030-36412-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123159174
    137 https://doi.org/10.1007/978-3-030-36412-0_11
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-319-62127-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090338611
    140 https://doi.org/10.1007/978-3-319-62127-2_4
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-319-78455-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101647685
    143 https://doi.org/10.1007/978-3-319-78455-7_3
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-642-24983-9_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035221403
    146 https://doi.org/10.1007/978-3-642-24983-9_19
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf01896190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050830116
    149 https://doi.org/10.1007/bf01896190
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10898-012-0028-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011271850
    152 https://doi.org/10.1007/s10898-012-0028-8
    153 rdf:type schema:CreativeWork
    154 grid-institutes:grid.11135.37 schema:alternateName School of EECS, Peking University, Beijing, China
    155 schema:name School of EECS, Peking University, Beijing, China
    156 rdf:type schema:Organization
    157 grid-institutes:grid.17089.37 schema:alternateName Department of Computing Science, University of Alberta, Edmonton, Canada
    158 schema:name Department of Computing Science, University of Alberta, Edmonton, Canada
    159 rdf:type schema:Organization
    160 grid-institutes:grid.411963.8 schema:alternateName Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China
    161 schema:name Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China
    162 rdf:type schema:Organization
    163 grid-institutes:grid.412773.4 schema:alternateName Division of Information System Design, Tokyo Denki University, Saitama, Japan
    164 schema:name Division of Information System Design, Tokyo Denki University, Saitama, Japan
    165 rdf:type schema:Organization
    166 grid-institutes:grid.440657.4 schema:alternateName Department of Mathematics, Taizhou University, Linhai, China
    167 schema:name Department of Mathematics, Taizhou University, Linhai, China
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...