Minimum Szeged index among unicyclic graphs with perfect matchings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-19

AUTHORS

Hechao Liu, Hanyuan Deng, Zikai Tang

ABSTRACT

Let G be a connected graph. The Szeged index of G is defined as Sz(G)=∑e=uv∈E(G)nu(e|G)nv(e|G), where nu(e|G) (resp., nv(e|G)) is the number of vertices whose distance to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), and n0(e|G) is the number of vertices equidistant from both ends of e. Let M(2β) be the set of unicyclic graphs with order 2β and a perfect matching. In this paper, we determine the minimum value of Szeged index and characterize the extremal graph with the minimum Szeged index among all unicyclic graphs with perfect matchings. More... »

PAGES

1-13

References to SciGraph publications

  • 1986. Mathematical Concepts in Organic Chemistry in NONE
  • 2001-05. Wiener Index of Trees: Theory and Applications in ACTA APPLICANDAE MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10878-019-00390-5

    DOI

    http://dx.doi.org/10.1007/s10878-019-00390-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112224500


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hunan Normal University", 
              "id": "https://www.grid.ac/institutes/grid.411427.5", 
              "name": [
                "Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China), College of Mathematics and Statistics, Hunan Normal University, 410081, Changsha, Hunan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Hechao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Normal University", 
              "id": "https://www.grid.ac/institutes/grid.411427.5", 
              "name": [
                "Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China), College of Mathematics and Statistics, Hunan Normal University, 410081, Changsha, Hunan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deng", 
            "givenName": "Hanyuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Normal University", 
              "id": "https://www.grid.ac/institutes/grid.411427.5", 
              "name": [
                "Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China), College of Mathematics and Statistics, Hunan Normal University, 410081, Changsha, Hunan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Zikai", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1112/jlms/s1-22.2.107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008123880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1014771508", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-70982-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014771508", 
              "https://doi.org/10.1007/978-3-642-70982-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-70982-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014771508", 
              "https://doi.org/10.1007/978-3-642-70982-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010767517079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027561060", 
              "https://doi.org/10.1023/a:1010767517079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-9659(96)00071-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028935173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dam.2016.01.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036476062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci00025a024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055400400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci00028a008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055400475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/157018005774717334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069201656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amc.2017.03.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084865073"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-19", 
        "datePublishedReg": "2019-02-19", 
        "description": "Let G be a connected graph. The Szeged index of G is defined as Sz(G)=\u2211e=uv\u2208E(G)nu(e|G)nv(e|G), where nu(e|G) (resp., nv(e|G)) is the number of vertices whose distance to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), and n0(e|G) is the number of vertices equidistant from both ends of e. Let M(2\u03b2) be the set of unicyclic graphs with order 2\u03b2 and a perfect matching. In this paper, we determine the minimum value of Szeged index and characterize the extremal graph with the minimum Szeged index among all unicyclic graphs with perfect matchings.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10878-019-00390-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1036683", 
            "issn": [
              "1382-6905", 
              "1573-2886"
            ], 
            "name": "Journal of Combinatorial Optimization", 
            "type": "Periodical"
          }
        ], 
        "name": "Minimum Szeged index among unicyclic graphs with perfect matchings", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "51865b9a35abf6fa91147c2f9205ecd4be85676ab25e93ba61bd288175256337"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10878-019-00390-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112224500"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10878-019-00390-5", 
          "https://app.dimensions.ai/details/publication/pub.1112224500"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47957_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10878-019-00390-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10878-019-00390-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10878-019-00390-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10878-019-00390-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10878-019-00390-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      34 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10878-019-00390-5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N448d97d4a2bd40eabaade3061cd6124c
    4 schema:citation sg:pub.10.1007/978-3-642-70982-1
    5 sg:pub.10.1023/a:1010767517079
    6 https://app.dimensions.ai/details/publication/pub.1014771508
    7 https://doi.org/10.1016/0893-9659(96)00071-7
    8 https://doi.org/10.1016/j.amc.2017.03.036
    9 https://doi.org/10.1016/j.dam.2016.01.029
    10 https://doi.org/10.1021/ci00025a024
    11 https://doi.org/10.1021/ci00028a008
    12 https://doi.org/10.1112/jlms/s1-22.2.107
    13 https://doi.org/10.2174/157018005774717334
    14 schema:datePublished 2019-02-19
    15 schema:datePublishedReg 2019-02-19
    16 schema:description Let G be a connected graph. The Szeged index of G is defined as Sz(G)=∑e=uv∈E(G)nu(e|G)nv(e|G), where nu(e|G) (resp., nv(e|G)) is the number of vertices whose distance to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), and n0(e|G) is the number of vertices equidistant from both ends of e. Let M(2β) be the set of unicyclic graphs with order 2β and a perfect matching. In this paper, we determine the minimum value of Szeged index and characterize the extremal graph with the minimum Szeged index among all unicyclic graphs with perfect matchings.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf sg:journal.1036683
    21 schema:name Minimum Szeged index among unicyclic graphs with perfect matchings
    22 schema:pagination 1-13
    23 schema:productId N2e9b27b5928c4b8cb74f69d2d40337fa
    24 N33597d008bda4012a004cedf39548ea5
    25 N8aa0d7dda37e4961a44d5c6a32c11196
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112224500
    27 https://doi.org/10.1007/s10878-019-00390-5
    28 schema:sdDatePublished 2019-04-11T09:08
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N3feca8fe774e4500a88c0ca9a2c0fa11
    31 schema:url https://link.springer.com/10.1007%2Fs10878-019-00390-5
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N1731b2a0f0e64cb8bea2efa2e6609468 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
    36 schema:familyName Liu
    37 schema:givenName Hechao
    38 rdf:type schema:Person
    39 N2e9b27b5928c4b8cb74f69d2d40337fa schema:name dimensions_id
    40 schema:value pub.1112224500
    41 rdf:type schema:PropertyValue
    42 N33597d008bda4012a004cedf39548ea5 schema:name doi
    43 schema:value 10.1007/s10878-019-00390-5
    44 rdf:type schema:PropertyValue
    45 N3feca8fe774e4500a88c0ca9a2c0fa11 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N448d97d4a2bd40eabaade3061cd6124c rdf:first N1731b2a0f0e64cb8bea2efa2e6609468
    48 rdf:rest Nb3a942a2dcf443ba98344f96cb922239
    49 N68d2d0ced2fe449dac8f7f8fd8594412 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
    50 schema:familyName Tang
    51 schema:givenName Zikai
    52 rdf:type schema:Person
    53 N8aa0d7dda37e4961a44d5c6a32c11196 schema:name readcube_id
    54 schema:value 51865b9a35abf6fa91147c2f9205ecd4be85676ab25e93ba61bd288175256337
    55 rdf:type schema:PropertyValue
    56 Na8ecaaf918764af184407cc851ba964e schema:affiliation https://www.grid.ac/institutes/grid.411427.5
    57 schema:familyName Deng
    58 schema:givenName Hanyuan
    59 rdf:type schema:Person
    60 Nb3a942a2dcf443ba98344f96cb922239 rdf:first Na8ecaaf918764af184407cc851ba964e
    61 rdf:rest Nc7c4986dff9a4a90bca094f2199a3417
    62 Nc7c4986dff9a4a90bca094f2199a3417 rdf:first N68d2d0ced2fe449dac8f7f8fd8594412
    63 rdf:rest rdf:nil
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Pure Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1036683 schema:issn 1382-6905
    71 1573-2886
    72 schema:name Journal of Combinatorial Optimization
    73 rdf:type schema:Periodical
    74 sg:pub.10.1007/978-3-642-70982-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014771508
    75 https://doi.org/10.1007/978-3-642-70982-1
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1023/a:1010767517079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027561060
    78 https://doi.org/10.1023/a:1010767517079
    79 rdf:type schema:CreativeWork
    80 https://app.dimensions.ai/details/publication/pub.1014771508 schema:CreativeWork
    81 https://doi.org/10.1016/0893-9659(96)00071-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028935173
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/j.amc.2017.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084865073
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/j.dam.2016.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036476062
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1021/ci00025a024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055400400
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1021/ci00028a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055400475
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1112/jlms/s1-22.2.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008123880
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.2174/157018005774717334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069201656
    94 rdf:type schema:CreativeWork
    95 https://www.grid.ac/institutes/grid.411427.5 schema:alternateName Hunan Normal University
    96 schema:name Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China), College of Mathematics and Statistics, Hunan Normal University, 410081, Changsha, Hunan, People’s Republic of China
    97 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...