An approximation algorithm for maximum internal spanning tree View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-15

AUTHORS

Zhi-Zhong Chen, Youta Harada, Fei Guo, Lusheng Wang

ABSTRACT

Given a graph G, the maximum internal spanning tree problem (MIST for short) asks for computing a spanning tree T of G such that the number of internal vertices in T is maximized. MIST has possible applications in the design of cost-efficient communication networks and water supply networks and hence has been extensively studied in the literature. MIST is NP-hard and hence a number of polynomial-time approximation algorithms have been designed for MIST in the literature. The previously best polynomial-time approximation algorithm for MIST achieves a ratio of 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{4}$$\end{document}. In this paper, we first design a simpler algorithm that achieves the same ratio and the same time complexity as the previous best. We then refine the algorithm into a new approximation algorithm that achieves a better ratio (namely, 1317\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{13}{17}$$\end{document}) with the same time complexity. Our new algorithm explores much deeper structure of the problem than the previous best. The discovered structure may be used to design even better approximation or parameterized algorithms for the problem in the future. More... »

PAGES

955-979

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10878-017-0245-7

DOI

http://dx.doi.org/10.1007/s10878-017-0245-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100399540


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412773.4", 
          "name": [
            "Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhi-Zhong", 
        "id": "sg:person.015654265661.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412773.4", 
          "name": [
            "Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harada", 
        "givenName": "Youta", 
        "id": "sg:person.011526465541.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526465541.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Tianjin University, No.135, Yaguan Road, Tianjin, China", 
          "id": "http://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Computer Science and Technology, Tianjin University, No.135, Yaguan Road, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Fei", 
        "id": "sg:person.0776100512.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776100512.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lusheng", 
        "id": "sg:person.01105113721.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00453-011-9555-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031494108", 
          "https://doi.org/10.1007/s00453-011-9555-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-21840-3_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043411366", 
          "https://doi.org/10.1007/978-3-319-21840-3_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00453-011-9575-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008571231", 
          "https://doi.org/10.1007/s00453-011-9575-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45078-8_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003514994", 
          "https://doi.org/10.1007/978-3-540-45078-8_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-39817-4_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004271999", 
          "https://doi.org/10.1007/978-3-319-39817-4_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-44777-2_53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000274920", 
          "https://doi.org/10.1007/978-3-662-44777-2_53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03367-4_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025243568", 
          "https://doi.org/10.1007/978-3-642-03367-4_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-13075-0_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035359535", 
          "https://doi.org/10.1007/978-3-319-13075-0_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-62389-4_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090448513", 
          "https://doi.org/10.1007/978-3-319-62389-4_11"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-15", 
    "datePublishedReg": "2018-01-15", 
    "description": "Given a graph G, the maximum internal spanning tree problem (MIST for short) asks for computing a spanning tree T of G such that the number of internal vertices in T is maximized. MIST has possible applications in the design of cost-efficient communication networks and water supply networks and hence has been extensively studied in the literature. MIST is NP-hard and hence a number of polynomial-time approximation algorithms have been designed for MIST in the literature. The previously best polynomial-time approximation algorithm for MIST achieves a ratio of 34\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{3}{4}$$\\end{document}. In this paper, we first design a simpler algorithm that achieves the same ratio and the same time complexity as the previous best. We then refine the algorithm into a new approximation algorithm that achieves a better ratio (namely, 1317\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{13}{17}$$\\end{document}) with the same time complexity. Our new algorithm explores much deeper structure of the problem than the previous best. The discovered structure may be used to design even better approximation or parameterized algorithms for the problem in the future.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10878-017-0245-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8293592", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6078852", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036683", 
        "issn": [
          "1382-6905", 
          "1573-2886"
        ], 
        "name": "Journal of Combinatorial Optimization", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "polynomial-time approximation algorithm", 
      "same time complexity", 
      "approximation algorithm", 
      "time complexity", 
      "best polynomial-time approximation algorithm", 
      "spanning tree problem", 
      "communication networks", 
      "new approximation algorithm", 
      "discovered structure", 
      "algorithm", 
      "new algorithm", 
      "tree problem", 
      "spanning tree", 
      "supply network", 
      "simple algorithm", 
      "network", 
      "Maximum Internal Spanning Tree", 
      "Maximum Internal Spanning Tree problem", 
      "complexity", 
      "water supply network", 
      "good approximation", 
      "graph G", 
      "internal vertices", 
      "NPs", 
      "tree T", 
      "possible applications", 
      "deep structure", 
      "problem", 
      "applications", 
      "vertices", 
      "trees", 
      "approximation", 
      "design", 
      "number", 
      "best ratio", 
      "structure", 
      "literature", 
      "future", 
      "same ratio", 
      "ratio", 
      "mist", 
      "paper"
    ], 
    "name": "An approximation algorithm for maximum internal spanning tree", 
    "pagination": "955-979", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100399540"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10878-017-0245-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10878-017-0245-7", 
      "https://app.dimensions.ai/details/publication/pub.1100399540"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_777.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10878-017-0245-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10878-017-0245-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10878-017-0245-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10878-017-0245-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10878-017-0245-7'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      22 PREDICATES      78 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10878-017-0245-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 anzsrc-for:0103
5 schema:author Nade34da3d7274cee9510a097dd922903
6 schema:citation sg:pub.10.1007/978-3-319-13075-0_37
7 sg:pub.10.1007/978-3-319-21840-3_41
8 sg:pub.10.1007/978-3-319-39817-4_10
9 sg:pub.10.1007/978-3-319-62389-4_11
10 sg:pub.10.1007/978-3-540-45078-8_41
11 sg:pub.10.1007/978-3-642-03367-4_40
12 sg:pub.10.1007/978-3-662-44777-2_53
13 sg:pub.10.1007/s00453-011-9555-9
14 sg:pub.10.1007/s00453-011-9575-5
15 schema:datePublished 2018-01-15
16 schema:datePublishedReg 2018-01-15
17 schema:description Given a graph G, the maximum internal spanning tree problem (MIST for short) asks for computing a spanning tree T of G such that the number of internal vertices in T is maximized. MIST has possible applications in the design of cost-efficient communication networks and water supply networks and hence has been extensively studied in the literature. MIST is NP-hard and hence a number of polynomial-time approximation algorithms have been designed for MIST in the literature. The previously best polynomial-time approximation algorithm for MIST achieves a ratio of 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{4}$$\end{document}. In this paper, we first design a simpler algorithm that achieves the same ratio and the same time complexity as the previous best. We then refine the algorithm into a new approximation algorithm that achieves a better ratio (namely, 1317\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{13}{17}$$\end{document}) with the same time complexity. Our new algorithm explores much deeper structure of the problem than the previous best. The discovered structure may be used to design even better approximation or parameterized algorithms for the problem in the future.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N217b2c5559c943679962714618e92a95
22 Nfe93208d3f0243d9887a82ed507924ff
23 sg:journal.1036683
24 schema:keywords Maximum Internal Spanning Tree
25 Maximum Internal Spanning Tree problem
26 NPs
27 algorithm
28 applications
29 approximation
30 approximation algorithm
31 best polynomial-time approximation algorithm
32 best ratio
33 communication networks
34 complexity
35 deep structure
36 design
37 discovered structure
38 future
39 good approximation
40 graph G
41 internal vertices
42 literature
43 mist
44 network
45 new algorithm
46 new approximation algorithm
47 number
48 paper
49 polynomial-time approximation algorithm
50 possible applications
51 problem
52 ratio
53 same ratio
54 same time complexity
55 simple algorithm
56 spanning tree
57 spanning tree problem
58 structure
59 supply network
60 time complexity
61 tree T
62 tree problem
63 trees
64 vertices
65 water supply network
66 schema:name An approximation algorithm for maximum internal spanning tree
67 schema:pagination 955-979
68 schema:productId N2443138c965e439db3c586ea94a3d880
69 N439901b47931455c9633d3d6cfd3fd11
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100399540
71 https://doi.org/10.1007/s10878-017-0245-7
72 schema:sdDatePublished 2022-05-10T10:18
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N58da0e9d2e714c95b75ee34968d5285f
75 schema:url https://doi.org/10.1007/s10878-017-0245-7
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N033ba16f144d44adb365e1ea07efcb60 rdf:first sg:person.0776100512.16
80 rdf:rest N2b43d53676b54503a873f482926081ee
81 N217b2c5559c943679962714618e92a95 schema:volumeNumber 35
82 rdf:type schema:PublicationVolume
83 N2443138c965e439db3c586ea94a3d880 schema:name doi
84 schema:value 10.1007/s10878-017-0245-7
85 rdf:type schema:PropertyValue
86 N2b43d53676b54503a873f482926081ee rdf:first sg:person.01105113721.52
87 rdf:rest rdf:nil
88 N439901b47931455c9633d3d6cfd3fd11 schema:name dimensions_id
89 schema:value pub.1100399540
90 rdf:type schema:PropertyValue
91 N58da0e9d2e714c95b75ee34968d5285f schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N9032892307a74f5f85bdf9b414afa3e8 rdf:first sg:person.011526465541.54
94 rdf:rest N033ba16f144d44adb365e1ea07efcb60
95 Nade34da3d7274cee9510a097dd922903 rdf:first sg:person.015654265661.98
96 rdf:rest N9032892307a74f5f85bdf9b414afa3e8
97 Nfe93208d3f0243d9887a82ed507924ff schema:issueNumber 3
98 rdf:type schema:PublicationIssue
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
103 schema:name Pure Mathematics
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
106 schema:name Applied Mathematics
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
109 schema:name Numerical and Computational Mathematics
110 rdf:type schema:DefinedTerm
111 sg:grant.6078852 http://pending.schema.org/fundedItem sg:pub.10.1007/s10878-017-0245-7
112 rdf:type schema:MonetaryGrant
113 sg:grant.8293592 http://pending.schema.org/fundedItem sg:pub.10.1007/s10878-017-0245-7
114 rdf:type schema:MonetaryGrant
115 sg:journal.1036683 schema:issn 1382-6905
116 1573-2886
117 schema:name Journal of Combinatorial Optimization
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01105113721.52 schema:affiliation grid-institutes:None
121 schema:familyName Wang
122 schema:givenName Lusheng
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52
124 rdf:type schema:Person
125 sg:person.011526465541.54 schema:affiliation grid-institutes:grid.412773.4
126 schema:familyName Harada
127 schema:givenName Youta
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526465541.54
129 rdf:type schema:Person
130 sg:person.015654265661.98 schema:affiliation grid-institutes:grid.412773.4
131 schema:familyName Chen
132 schema:givenName Zhi-Zhong
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98
134 rdf:type schema:Person
135 sg:person.0776100512.16 schema:affiliation grid-institutes:grid.33763.32
136 schema:familyName Guo
137 schema:givenName Fei
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776100512.16
139 rdf:type schema:Person
140 sg:pub.10.1007/978-3-319-13075-0_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035359535
141 https://doi.org/10.1007/978-3-319-13075-0_37
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/978-3-319-21840-3_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043411366
144 https://doi.org/10.1007/978-3-319-21840-3_41
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/978-3-319-39817-4_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004271999
147 https://doi.org/10.1007/978-3-319-39817-4_10
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/978-3-319-62389-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090448513
150 https://doi.org/10.1007/978-3-319-62389-4_11
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-540-45078-8_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003514994
153 https://doi.org/10.1007/978-3-540-45078-8_41
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/978-3-642-03367-4_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025243568
156 https://doi.org/10.1007/978-3-642-03367-4_40
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-3-662-44777-2_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000274920
159 https://doi.org/10.1007/978-3-662-44777-2_53
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s00453-011-9555-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031494108
162 https://doi.org/10.1007/s00453-011-9555-9
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00453-011-9575-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008571231
165 https://doi.org/10.1007/s00453-011-9575-5
166 rdf:type schema:CreativeWork
167 grid-institutes:None schema:alternateName Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
168 schema:name Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
169 rdf:type schema:Organization
170 grid-institutes:grid.33763.32 schema:alternateName School of Computer Science and Technology, Tianjin University, No.135, Yaguan Road, Tianjin, China
171 schema:name School of Computer Science and Technology, Tianjin University, No.135, Yaguan Road, Tianjin, China
172 rdf:type schema:Organization
173 grid-institutes:grid.412773.4 schema:alternateName Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan
174 schema:name Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...