2-Distance coloring of planar graphs with girth 5 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Wei Dong, Baogang Xu

ABSTRACT

A vertex coloring is said to be 2-distance if any two distinct vertices of distance at most 2 receive different colors. Let G be a planar graph with girth at least 5. In this paper, we prove that G admits a 2-distance coloring with at most Δ(G)+3 colors if Δ(G)≥339.

PAGES

1302-1322

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10878-017-0148-7

DOI

http://dx.doi.org/10.1007/s10878-017-0148-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090309398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "School of Information and Engineering, Nanjing XiaoZhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Wei", 
        "id": "sg:person.014055474150.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055474150.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Normal University", 
          "id": "https://www.grid.ac/institutes/grid.260474.3", 
          "name": [
            "Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, 210023, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Baogang", 
        "id": "sg:person.07746444521.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746444521.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jgt.10077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001701992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jctb.2004.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001705660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dam.2016.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002993315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2013.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010542298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2009.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012808550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2013.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013797763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0012-365x(01)00466-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013836607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2009.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022325931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2012.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024840636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00453-010-9425-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025589225", 
          "https://doi.org/10.1007/s00453-010-9425-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2008.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029540815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-015-9888-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029544188", 
          "https://doi.org/10.1007/s10878-015-9888-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0037446606010046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031767702", 
          "https://doi.org/10.1134/s0037446606010046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2010.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034415242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2010.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035144048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-011-9409-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050611643", 
          "https://doi.org/10.1007/s10878-011-9409-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejc.2007.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053537383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895480101390448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109703686", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-03521-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109703686", 
          "https://doi.org/10.1007/978-1-349-03521-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-03521-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109703686", 
          "https://doi.org/10.1007/978-1-349-03521-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "A vertex coloring is said to be 2-distance if any two distinct vertices of distance at most 2 receive different colors. Let G be a planar graph with girth at least 5. In this paper, we prove that G admits a 2-distance coloring with at most \u0394(G)+3 colors if \u0394(G)\u2265339.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10878-017-0148-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036683", 
        "issn": [
          "1382-6905", 
          "1573-2886"
        ], 
        "name": "Journal of Combinatorial Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "2-Distance coloring of planar graphs with girth 5", 
    "pagination": "1302-1322", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "13258b8cbd4558c5bdefc869e669a2f56fc77bafb6c021eb721fd0910ba45c9d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10878-017-0148-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090309398"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10878-017-0148-7", 
      "https://app.dimensions.ai/details/publication/pub.1090309398"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87088_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10878-017-0148-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10878-017-0148-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10878-017-0148-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10878-017-0148-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10878-017-0148-7'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      20 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10878-017-0148-7 schema:author N5bf2d85c2be94610aad405cfc23fcc0e
2 schema:citation sg:pub.10.1007/978-1-349-03521-2
3 sg:pub.10.1007/s00453-010-9425-x
4 sg:pub.10.1007/s10878-011-9409-z
5 sg:pub.10.1007/s10878-015-9888-4
6 sg:pub.10.1134/s0037446606010046
7 https://app.dimensions.ai/details/publication/pub.1109703686
8 https://doi.org/10.1002/jgt.10077
9 https://doi.org/10.1016/j.dam.2016.07.026
10 https://doi.org/10.1016/j.disc.2008.04.005
11 https://doi.org/10.1016/j.disc.2009.04.020
12 https://doi.org/10.1016/j.disc.2009.06.029
13 https://doi.org/10.1016/j.disc.2010.07.003
14 https://doi.org/10.1016/j.disc.2010.10.008
15 https://doi.org/10.1016/j.disc.2012.11.011
16 https://doi.org/10.1016/j.disc.2013.02.014
17 https://doi.org/10.1016/j.disc.2013.10.017
18 https://doi.org/10.1016/j.ejc.2007.11.005
19 https://doi.org/10.1016/j.jctb.2004.12.005
20 https://doi.org/10.1016/s0012-365x(01)00466-6
21 https://doi.org/10.1137/s0895480101390448
22 schema:datePublished 2017-11
23 schema:datePublishedReg 2017-11-01
24 schema:description A vertex coloring is said to be 2-distance if any two distinct vertices of distance at most 2 receive different colors. Let G be a planar graph with girth at least 5. In this paper, we prove that G admits a 2-distance coloring with at most Δ(G)+3 colors if Δ(G)≥339.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N9f96fe5bc18348f5af30ca2eb4dcb9bb
29 Nfa284b35be3a494a80d9a7c2fbbac972
30 sg:journal.1036683
31 schema:name 2-Distance coloring of planar graphs with girth 5
32 schema:pagination 1302-1322
33 schema:productId N14a7824f9e504eec906ee48261a02daa
34 Nb26a6952a64a46498f75d6a799e84495
35 Nd779925135324a598203f4597958e617
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090309398
37 https://doi.org/10.1007/s10878-017-0148-7
38 schema:sdDatePublished 2019-04-11T12:23
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Ncb15f1d6176645c4a61c0869ac82186e
41 schema:url https://link.springer.com/10.1007%2Fs10878-017-0148-7
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N14a7824f9e504eec906ee48261a02daa schema:name doi
46 schema:value 10.1007/s10878-017-0148-7
47 rdf:type schema:PropertyValue
48 N5bf2d85c2be94610aad405cfc23fcc0e rdf:first sg:person.014055474150.78
49 rdf:rest Nf1ba28deb5fb4337b5d0ec60214f54e1
50 N9f96fe5bc18348f5af30ca2eb4dcb9bb schema:volumeNumber 34
51 rdf:type schema:PublicationVolume
52 Nb26a6952a64a46498f75d6a799e84495 schema:name readcube_id
53 schema:value 13258b8cbd4558c5bdefc869e669a2f56fc77bafb6c021eb721fd0910ba45c9d
54 rdf:type schema:PropertyValue
55 Ncb15f1d6176645c4a61c0869ac82186e schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nd779925135324a598203f4597958e617 schema:name dimensions_id
58 schema:value pub.1090309398
59 rdf:type schema:PropertyValue
60 Nf1ba28deb5fb4337b5d0ec60214f54e1 rdf:first sg:person.07746444521.34
61 rdf:rest rdf:nil
62 Nfa284b35be3a494a80d9a7c2fbbac972 schema:issueNumber 4
63 rdf:type schema:PublicationIssue
64 sg:journal.1036683 schema:issn 1382-6905
65 1573-2886
66 schema:name Journal of Combinatorial Optimization
67 rdf:type schema:Periodical
68 sg:person.014055474150.78 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
69 schema:familyName Dong
70 schema:givenName Wei
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055474150.78
72 rdf:type schema:Person
73 sg:person.07746444521.34 schema:affiliation https://www.grid.ac/institutes/grid.260474.3
74 schema:familyName Xu
75 schema:givenName Baogang
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746444521.34
77 rdf:type schema:Person
78 sg:pub.10.1007/978-1-349-03521-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109703686
79 https://doi.org/10.1007/978-1-349-03521-2
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s00453-010-9425-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025589225
82 https://doi.org/10.1007/s00453-010-9425-x
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s10878-011-9409-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050611643
85 https://doi.org/10.1007/s10878-011-9409-z
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10878-015-9888-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029544188
88 https://doi.org/10.1007/s10878-015-9888-4
89 rdf:type schema:CreativeWork
90 sg:pub.10.1134/s0037446606010046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031767702
91 https://doi.org/10.1134/s0037446606010046
92 rdf:type schema:CreativeWork
93 https://app.dimensions.ai/details/publication/pub.1109703686 schema:CreativeWork
94 https://doi.org/10.1002/jgt.10077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001701992
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.dam.2016.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002993315
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.disc.2008.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540815
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.disc.2009.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022325931
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.disc.2009.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012808550
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.disc.2010.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035144048
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.disc.2010.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034415242
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.disc.2012.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024840636
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.disc.2013.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013797763
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.disc.2013.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010542298
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.ejc.2007.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053537383
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jctb.2004.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001705660
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0012-365x(01)00466-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013836607
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1137/s0895480101390448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882601
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.260474.3 schema:alternateName Nanjing Normal University
123 schema:name Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, 210023, Nanjing, China
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.440845.9 schema:alternateName Nanjing Xiaozhuang University
126 schema:name School of Information and Engineering, Nanjing XiaoZhuang University, 211171, Nanjing, China
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...