Ontology type: schema:ScholarlyArticle
2010-04-24
AUTHORSHuaming Zhang, Sadish Sadasivam
ABSTRACTLet G=(V,E) and G′=(V′,E′) be two graphs, an adjacency-preserving transformation from G to G′ is a one-to-many and onto mapping from V to V′ satisfying the following: (1) Each vertex v∈V in G is mapped to a non-empty subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)\subset V'$\end{document} in G′. The subgraph induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)$\end{document} is a connected subgraph of G′; (2) if u≠v∈V, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(u)\cap\mathcal{A}(v)=\emptyset$\end{document}; and (3) two vertices u and v are adjacent to each other in G if and only if subgraphs induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(u)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)$\end{document} are connected in G′.In this paper, we study adjacency-preserving transformations from plane triangulations to irreducible triangulations (which are internally triangulated, with four exterior vertices and no separating triangles). As one shall see, our transformations not only preserve adjacency well, but also preserve the endowed realizers of plane triangulations well in the endowed transversal structures of the image irreducible triangulations, which may be desirable in some applications.We then present such an application in floor-planning of plane graphs. The expected grid size of the floor-plan of our linear time algorithm is improved to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\frac{5n}{8}+O(1))\times (\frac{23n}{24}+O(1))$\end{document}, though the worst case grid size bound of the algorithm remains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lfloor\frac{2n+1}{3}\rfloor\times(n-1)$\end{document}, which is the same as the algorithm presented in Liao et al. (J. Algorithms 48:441–451, 2003). More... »
PAGES726-746
http://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8
DOIhttp://dx.doi.org/10.1007/s10878-010-9324-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036096738
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265893.3",
"name": [
"Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Huaming",
"id": "sg:person.012041227127.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265893.3",
"name": [
"Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
],
"type": "Organization"
},
"familyName": "Sadasivam",
"givenName": "Sadish",
"id": "sg:person.015341066775.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341066775.96"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01840399",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028591325",
"https://doi.org/10.1007/bf01840399"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00453-008-9215-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032949578",
"https://doi.org/10.1007/s00453-008-9215-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00353652",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015637021",
"https://doi.org/10.1007/bf00353652"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11618058_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014203093",
"https://doi.org/10.1007/11618058_17"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-77537-9_22",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050806102",
"https://doi.org/10.1007/978-3-540-77537-9_22"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01891831",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006423518",
"https://doi.org/10.1007/bf01891831"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01762117",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003139574",
"https://doi.org/10.1007/bf01762117"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-45465-9_89",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049697548",
"https://doi.org/10.1007/3-540-45465-9_89"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-04-24",
"datePublishedReg": "2010-04-24",
"description": "Let G=(V,E) and\u00a0G\u2032=(V\u2032,E\u2032) be two graphs, an adjacency-preserving transformation from\u00a0G to\u00a0G\u2032 is a one-to-many and onto mapping from V to V\u2032 satisfying the following: (1)\u00a0Each vertex v\u2208V in\u00a0G is mapped to a non-empty subset \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(v)\\subset V'$\\end{document} in\u00a0G\u2032. The subgraph induced by \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(v)$\\end{document} is a connected subgraph of\u00a0G\u2032; (2)\u00a0if u\u2260v\u2208V, then \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(u)\\cap\\mathcal{A}(v)=\\emptyset$\\end{document}; and (3)\u00a0two vertices u and v are adjacent to each other in\u00a0G if and only if subgraphs induced by \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(u)$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(v)$\\end{document} are connected in\u00a0G\u2032.In this paper, we study adjacency-preserving transformations from plane triangulations to irreducible triangulations (which are internally triangulated, with four exterior vertices and no separating triangles). As one shall see, our transformations not only preserve adjacency well, but also preserve the endowed realizers of plane triangulations well in the endowed transversal structures of the image irreducible triangulations, which may be desirable in some applications.We then present such an application in floor-planning of plane graphs. The expected grid size of the floor-plan of our linear time algorithm is improved to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$(\\frac{5n}{8}+O(1))\\times (\\frac{23n}{24}+O(1))$\\end{document}, though the worst case grid size bound of the algorithm remains \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\lfloor\\frac{2n+1}{3}\\rfloor\\times(n-1)$\\end{document}, which is the same as the algorithm presented in Liao et\u00a0al. (J.\u00a0Algorithms 48:441\u2013451, 2003).",
"genre": "article",
"id": "sg:pub.10.1007/s10878-010-9324-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1036683",
"issn": [
"1382-6905",
"1573-2886"
],
"name": "Journal of Combinatorial Optimization",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"keywords": [
"subset",
"size",
"following",
"et",
"transformation",
"mapping",
"triangulation",
"applications",
"structure",
"al",
"non-empty subset",
"G\u2032",
"algorithm",
"paper",
"adjacency",
"vertices u",
"graph",
"G\u2032.",
"connected subgraph",
"grid size",
"plane triangulations",
"subgraphs",
"realizers",
"transversal structure",
"time algorithm",
"plane graph",
"linear time algorithm",
"irreducible triangulations",
"Liao et"
],
"name": "Improved floor-planning of graphs via adjacency-preserving transformations",
"pagination": "726-746",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036096738"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10878-010-9324-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10878-010-9324-8",
"https://app.dimensions.ai/details/publication/pub.1036096738"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_514.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10878-010-9324-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8'
This table displays all metadata directly associated to this object as RDF triples.
134 TRIPLES
22 PREDICATES
64 URIs
46 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10878-010-9324-8 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | ″ | anzsrc-for:0102 |
4 | ″ | ″ | anzsrc-for:0103 |
5 | ″ | schema:author | N720b38d6edc94bb1bcf86f40fb326a49 |
6 | ″ | schema:citation | sg:pub.10.1007/11618058_17 |
7 | ″ | ″ | sg:pub.10.1007/3-540-45465-9_89 |
8 | ″ | ″ | sg:pub.10.1007/978-3-540-77537-9_22 |
9 | ″ | ″ | sg:pub.10.1007/bf00353652 |
10 | ″ | ″ | sg:pub.10.1007/bf01762117 |
11 | ″ | ″ | sg:pub.10.1007/bf01840399 |
12 | ″ | ″ | sg:pub.10.1007/bf01891831 |
13 | ″ | ″ | sg:pub.10.1007/s00453-008-9215-x |
14 | ″ | schema:datePublished | 2010-04-24 |
15 | ″ | schema:datePublishedReg | 2010-04-24 |
16 | ″ | schema:description | Let G=(V,E) and G′=(V′,E′) be two graphs, an adjacency-preserving transformation from G to G′ is a one-to-many and onto mapping from V to V′ satisfying the following: (1) Each vertex v∈V in G is mapped to a non-empty subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)\subset V'$\end{document} in G′. The subgraph induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)$\end{document} is a connected subgraph of G′; (2) if u≠v∈V, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(u)\cap\mathcal{A}(v)=\emptyset$\end{document}; and (3) two vertices u and v are adjacent to each other in G if and only if subgraphs induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(u)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)$\end{document} are connected in G′.In this paper, we study adjacency-preserving transformations from plane triangulations to irreducible triangulations (which are internally triangulated, with four exterior vertices and no separating triangles). As one shall see, our transformations not only preserve adjacency well, but also preserve the endowed realizers of plane triangulations well in the endowed transversal structures of the image irreducible triangulations, which may be desirable in some applications.We then present such an application in floor-planning of plane graphs. The expected grid size of the floor-plan of our linear time algorithm is improved to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\frac{5n}{8}+O(1))\times (\frac{23n}{24}+O(1))$\end{document}, though the worst case grid size bound of the algorithm remains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lfloor\frac{2n+1}{3}\rfloor\times(n-1)$\end{document}, which is the same as the algorithm presented in Liao et al. (J. Algorithms 48:441–451, 2003). |
17 | ″ | schema:genre | article |
18 | ″ | schema:inLanguage | en |
19 | ″ | schema:isAccessibleForFree | false |
20 | ″ | schema:isPartOf | Na17cfa8b94884b63ab4f61b3ee79ece2 |
21 | ″ | ″ | Ne31de457f7a2444e8dd0486579f3d5b3 |
22 | ″ | ″ | sg:journal.1036683 |
23 | ″ | schema:keywords | G′ |
24 | ″ | ″ | G′. |
25 | ″ | ″ | Liao et |
26 | ″ | ″ | adjacency |
27 | ″ | ″ | al |
28 | ″ | ″ | algorithm |
29 | ″ | ″ | applications |
30 | ″ | ″ | connected subgraph |
31 | ″ | ″ | et |
32 | ″ | ″ | following |
33 | ″ | ″ | graph |
34 | ″ | ″ | grid size |
35 | ″ | ″ | irreducible triangulations |
36 | ″ | ″ | linear time algorithm |
37 | ″ | ″ | mapping |
38 | ″ | ″ | non-empty subset |
39 | ″ | ″ | paper |
40 | ″ | ″ | plane graph |
41 | ″ | ″ | plane triangulations |
42 | ″ | ″ | realizers |
43 | ″ | ″ | size |
44 | ″ | ″ | structure |
45 | ″ | ″ | subgraphs |
46 | ″ | ″ | subset |
47 | ″ | ″ | time algorithm |
48 | ″ | ″ | transformation |
49 | ″ | ″ | transversal structure |
50 | ″ | ″ | triangulation |
51 | ″ | ″ | vertices u |
52 | ″ | schema:name | Improved floor-planning of graphs via adjacency-preserving transformations |
53 | ″ | schema:pagination | 726-746 |
54 | ″ | schema:productId | N38cc907e22cd4479bf4a4d33702c5cc8 |
55 | ″ | ″ | Ne8d9d44edef443bd814eb2442dacec14 |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036096738 |
57 | ″ | ″ | https://doi.org/10.1007/s10878-010-9324-8 |
58 | ″ | schema:sdDatePublished | 2022-05-20T07:26 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N2d0929ce271d453f922138fe08b3160f |
61 | ″ | schema:url | https://doi.org/10.1007/s10878-010-9324-8 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | articles |
64 | ″ | rdf:type | schema:ScholarlyArticle |
65 | N2d0929ce271d453f922138fe08b3160f | schema:name | Springer Nature - SN SciGraph project |
66 | ″ | rdf:type | schema:Organization |
67 | N38cc907e22cd4479bf4a4d33702c5cc8 | schema:name | dimensions_id |
68 | ″ | schema:value | pub.1036096738 |
69 | ″ | rdf:type | schema:PropertyValue |
70 | N5f7014f5a2ae4a3e80eb482b957a29ec | rdf:first | sg:person.015341066775.96 |
71 | ″ | rdf:rest | rdf:nil |
72 | N720b38d6edc94bb1bcf86f40fb326a49 | rdf:first | sg:person.012041227127.88 |
73 | ″ | rdf:rest | N5f7014f5a2ae4a3e80eb482b957a29ec |
74 | Na17cfa8b94884b63ab4f61b3ee79ece2 | schema:issueNumber | 4 |
75 | ″ | rdf:type | schema:PublicationIssue |
76 | Ne31de457f7a2444e8dd0486579f3d5b3 | schema:volumeNumber | 22 |
77 | ″ | rdf:type | schema:PublicationVolume |
78 | Ne8d9d44edef443bd814eb2442dacec14 | schema:name | doi |
79 | ″ | schema:value | 10.1007/s10878-010-9324-8 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
82 | ″ | schema:name | Mathematical Sciences |
83 | ″ | rdf:type | schema:DefinedTerm |
84 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
85 | ″ | schema:name | Pure Mathematics |
86 | ″ | rdf:type | schema:DefinedTerm |
87 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
88 | ″ | schema:name | Applied Mathematics |
89 | ″ | rdf:type | schema:DefinedTerm |
90 | anzsrc-for:0103 | schema:inDefinedTermSet | anzsrc-for: |
91 | ″ | schema:name | Numerical and Computational Mathematics |
92 | ″ | rdf:type | schema:DefinedTerm |
93 | sg:journal.1036683 | schema:issn | 1382-6905 |
94 | ″ | ″ | 1573-2886 |
95 | ″ | schema:name | Journal of Combinatorial Optimization |
96 | ″ | schema:publisher | Springer Nature |
97 | ″ | rdf:type | schema:Periodical |
98 | sg:person.012041227127.88 | schema:affiliation | grid-institutes:grid.265893.3 |
99 | ″ | schema:familyName | Zhang |
100 | ″ | schema:givenName | Huaming |
101 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88 |
102 | ″ | rdf:type | schema:Person |
103 | sg:person.015341066775.96 | schema:affiliation | grid-institutes:grid.265893.3 |
104 | ″ | schema:familyName | Sadasivam |
105 | ″ | schema:givenName | Sadish |
106 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341066775.96 |
107 | ″ | rdf:type | schema:Person |
108 | sg:pub.10.1007/11618058_17 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014203093 |
109 | ″ | ″ | https://doi.org/10.1007/11618058_17 |
110 | ″ | rdf:type | schema:CreativeWork |
111 | sg:pub.10.1007/3-540-45465-9_89 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049697548 |
112 | ″ | ″ | https://doi.org/10.1007/3-540-45465-9_89 |
113 | ″ | rdf:type | schema:CreativeWork |
114 | sg:pub.10.1007/978-3-540-77537-9_22 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050806102 |
115 | ″ | ″ | https://doi.org/10.1007/978-3-540-77537-9_22 |
116 | ″ | rdf:type | schema:CreativeWork |
117 | sg:pub.10.1007/bf00353652 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015637021 |
118 | ″ | ″ | https://doi.org/10.1007/bf00353652 |
119 | ″ | rdf:type | schema:CreativeWork |
120 | sg:pub.10.1007/bf01762117 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003139574 |
121 | ″ | ″ | https://doi.org/10.1007/bf01762117 |
122 | ″ | rdf:type | schema:CreativeWork |
123 | sg:pub.10.1007/bf01840399 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028591325 |
124 | ″ | ″ | https://doi.org/10.1007/bf01840399 |
125 | ″ | rdf:type | schema:CreativeWork |
126 | sg:pub.10.1007/bf01891831 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006423518 |
127 | ″ | ″ | https://doi.org/10.1007/bf01891831 |
128 | ″ | rdf:type | schema:CreativeWork |
129 | sg:pub.10.1007/s00453-008-9215-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032949578 |
130 | ″ | ″ | https://doi.org/10.1007/s00453-008-9215-x |
131 | ″ | rdf:type | schema:CreativeWork |
132 | grid-institutes:grid.265893.3 | schema:alternateName | Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA |
133 | ″ | schema:name | Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA |
134 | ″ | rdf:type | schema:Organization |