# Improved floor-planning of graphs via adjacency-preserving transformations

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2010-04-24

AUTHORS ABSTRACT

Let G=(V,E) and G′=(V′,E′) be two graphs, an adjacency-preserving transformation from G to G′ is a one-to-many and onto mapping from V to V′ satisfying the following: (1) Each vertex v∈V in G is mapped to a non-empty subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)\subset V'$\end{document} in G′. The subgraph induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)$\end{document} is a connected subgraph of G′; (2) if u≠v∈V, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(u)\cap\mathcal{A}(v)=\emptyset$\end{document}; and (3) two vertices u and v are adjacent to each other in G if and only if subgraphs induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(u)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)$\end{document} are connected in G′.In this paper, we study adjacency-preserving transformations from plane triangulations to irreducible triangulations (which are internally triangulated, with four exterior vertices and no separating triangles). As one shall see, our transformations not only preserve adjacency well, but also preserve the endowed realizers of plane triangulations well in the endowed transversal structures of the image irreducible triangulations, which may be desirable in some applications.We then present such an application in floor-planning of plane graphs. The expected grid size of the floor-plan of our linear time algorithm is improved to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\frac{5n}{8}+O(1))\times (\frac{23n}{24}+O(1))$\end{document}, though the worst case grid size bound of the algorithm remains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lfloor\frac{2n+1}{3}\rfloor\times(n-1)$\end{document}, which is the same as the algorithm presented in Liao et al. (J. Algorithms 48:441–451, 2003). More... »

PAGES

726-746

### Journal

TITLE

Journal of Combinatorial Optimization

ISSUE

4

VOLUME

22

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8

DOI

http://dx.doi.org/10.1007/s10878-010-9324-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036096738

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265893.3",
"name": [
"Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Huaming",
"id": "sg:person.012041227127.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265893.3",
"name": [
"Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
],
"type": "Organization"
},
"id": "sg:person.015341066775.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341066775.96"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01840399",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028591325",
"https://doi.org/10.1007/bf01840399"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00453-008-9215-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032949578",
"https://doi.org/10.1007/s00453-008-9215-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00353652",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015637021",
"https://doi.org/10.1007/bf00353652"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11618058_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014203093",
"https://doi.org/10.1007/11618058_17"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-77537-9_22",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050806102",
"https://doi.org/10.1007/978-3-540-77537-9_22"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01891831",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006423518",
"https://doi.org/10.1007/bf01891831"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01762117",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003139574",
"https://doi.org/10.1007/bf01762117"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-45465-9_89",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049697548",
"https://doi.org/10.1007/3-540-45465-9_89"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-04-24",
"datePublishedReg": "2010-04-24",
"description": "Let G=(V,E) and\u00a0G\u2032=(V\u2032,E\u2032) be two graphs, an adjacency-preserving transformation from\u00a0G to\u00a0G\u2032 is a one-to-many and onto mapping from V to V\u2032 satisfying the following: (1)\u00a0Each vertex v\u2208V in\u00a0G is mapped to a non-empty subset \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(v)\\subset V'$\\end{document} in\u00a0G\u2032. The subgraph induced by \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(v)$\\end{document} is a connected subgraph of\u00a0G\u2032; (2)\u00a0if u\u2260v\u2208V, then \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(u)\\cap\\mathcal{A}(v)=\\emptyset$\\end{document}; and (3)\u00a0two vertices u and v are adjacent to each other in\u00a0G if and only if subgraphs induced by \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(u)$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}(v)$\\end{document} are connected in\u00a0G\u2032.In this paper, we study adjacency-preserving transformations from plane triangulations to irreducible triangulations (which are internally triangulated, with four exterior vertices and no separating triangles). As one shall see, our transformations not only preserve adjacency well, but also preserve the endowed realizers of plane triangulations well in the endowed transversal structures of the image irreducible triangulations, which may be desirable in some applications.We then present such an application in floor-planning of plane graphs. The expected grid size of the floor-plan of our linear time algorithm is improved to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$(\\frac{5n}{8}+O(1))\\times (\\frac{23n}{24}+O(1))$\\end{document}, though the worst case grid size bound of the algorithm remains \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\lfloor\\frac{2n+1}{3}\\rfloor\\times(n-1)$\\end{document}, which is the same as the algorithm presented in Liao et\u00a0al. (J.\u00a0Algorithms 48:441\u2013451, 2003).",
"genre": "article",
"id": "sg:pub.10.1007/s10878-010-9324-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1036683",
"issn": [
"1382-6905",
"1573-2886"
],
"name": "Journal of Combinatorial Optimization",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"subset",
"size",
"following",
"et",
"transformation",
"mapping",
"triangulation",
"applications",
"structure",
"al",
"non-empty subset",
"G\u2032",
"algorithm",
"paper",
"vertices u",
"graph",
"G\u2032.",
"connected subgraph",
"grid size",
"plane triangulations",
"subgraphs",
"realizers",
"transversal structure",
"time algorithm",
"plane graph",
"linear time algorithm",
"irreducible triangulations",
"Liao et"
],
"name": "Improved floor-planning of graphs via adjacency-preserving transformations",
"pagination": "726-746",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036096738"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10878-010-9324-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10878-010-9324-8",
"https://app.dimensions.ai/details/publication/pub.1036096738"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:26",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_514.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10878-010-9324-8"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10878-010-9324-8'

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      64 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
3 anzsrc-for:0102
4 anzsrc-for:0103
5 schema:author N720b38d6edc94bb1bcf86f40fb326a49
6 schema:citation sg:pub.10.1007/11618058_17
7 sg:pub.10.1007/3-540-45465-9_89
8 sg:pub.10.1007/978-3-540-77537-9_22
9 sg:pub.10.1007/bf00353652
10 sg:pub.10.1007/bf01762117
11 sg:pub.10.1007/bf01840399
12 sg:pub.10.1007/bf01891831
13 sg:pub.10.1007/s00453-008-9215-x
14 schema:datePublished 2010-04-24
15 schema:datePublishedReg 2010-04-24
16 schema:description Let G=(V,E) and G′=(V′,E′) be two graphs, an adjacency-preserving transformation from G to G′ is a one-to-many and onto mapping from V to V′ satisfying the following: (1) Each vertex v∈V in G is mapped to a non-empty subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)\subset V'$\end{document} in G′. The subgraph induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)$\end{document} is a connected subgraph of G′; (2) if u≠v∈V, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(u)\cap\mathcal{A}(v)=\emptyset$\end{document}; and (3) two vertices u and v are adjacent to each other in G if and only if subgraphs induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(u)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(v)$\end{document} are connected in G′.In this paper, we study adjacency-preserving transformations from plane triangulations to irreducible triangulations (which are internally triangulated, with four exterior vertices and no separating triangles). As one shall see, our transformations not only preserve adjacency well, but also preserve the endowed realizers of plane triangulations well in the endowed transversal structures of the image irreducible triangulations, which may be desirable in some applications.We then present such an application in floor-planning of plane graphs. The expected grid size of the floor-plan of our linear time algorithm is improved to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\frac{5n}{8}+O(1))\times (\frac{23n}{24}+O(1))$\end{document}, though the worst case grid size bound of the algorithm remains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lfloor\frac{2n+1}{3}\rfloor\times(n-1)$\end{document}, which is the same as the algorithm presented in Liao et al. (J. Algorithms 48:441–451, 2003).
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Na17cfa8b94884b63ab4f61b3ee79ece2
21 Ne31de457f7a2444e8dd0486579f3d5b3
22 sg:journal.1036683
23 schema:keywords G′
24 G′.
25 Liao et
27 al
28 algorithm
29 applications
30 connected subgraph
31 et
32 following
33 graph
34 grid size
35 irreducible triangulations
36 linear time algorithm
37 mapping
38 non-empty subset
39 paper
40 plane graph
41 plane triangulations
42 realizers
43 size
44 structure
45 subgraphs
46 subset
47 time algorithm
48 transformation
49 transversal structure
50 triangulation
51 vertices u
52 schema:name Improved floor-planning of graphs via adjacency-preserving transformations
53 schema:pagination 726-746
54 schema:productId N38cc907e22cd4479bf4a4d33702c5cc8
55 Ne8d9d44edef443bd814eb2442dacec14
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036096738
57 https://doi.org/10.1007/s10878-010-9324-8
58 schema:sdDatePublished 2022-05-20T07:26
60 schema:sdPublisher N2d0929ce271d453f922138fe08b3160f
61 schema:url https://doi.org/10.1007/s10878-010-9324-8
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N2d0929ce271d453f922138fe08b3160f schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N38cc907e22cd4479bf4a4d33702c5cc8 schema:name dimensions_id
68 schema:value pub.1036096738
69 rdf:type schema:PropertyValue
70 N5f7014f5a2ae4a3e80eb482b957a29ec rdf:first sg:person.015341066775.96
71 rdf:rest rdf:nil
72 N720b38d6edc94bb1bcf86f40fb326a49 rdf:first sg:person.012041227127.88
73 rdf:rest N5f7014f5a2ae4a3e80eb482b957a29ec
74 Na17cfa8b94884b63ab4f61b3ee79ece2 schema:issueNumber 4
75 rdf:type schema:PublicationIssue
77 rdf:type schema:PublicationVolume
78 Ne8d9d44edef443bd814eb2442dacec14 schema:name doi
79 schema:value 10.1007/s10878-010-9324-8
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
88 schema:name Applied Mathematics
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
91 schema:name Numerical and Computational Mathematics
92 rdf:type schema:DefinedTerm
93 sg:journal.1036683 schema:issn 1382-6905
94 1573-2886
95 schema:name Journal of Combinatorial Optimization
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.012041227127.88 schema:affiliation grid-institutes:grid.265893.3
99 schema:familyName Zhang
100 schema:givenName Huaming
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88
102 rdf:type schema:Person
103 sg:person.015341066775.96 schema:affiliation grid-institutes:grid.265893.3
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341066775.96
107 rdf:type schema:Person
108 sg:pub.10.1007/11618058_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014203093
109 https://doi.org/10.1007/11618058_17
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/3-540-45465-9_89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049697548
112 https://doi.org/10.1007/3-540-45465-9_89
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-540-77537-9_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050806102
115 https://doi.org/10.1007/978-3-540-77537-9_22
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf00353652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015637021
118 https://doi.org/10.1007/bf00353652
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01762117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003139574
121 https://doi.org/10.1007/bf01762117
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01840399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028591325
124 https://doi.org/10.1007/bf01840399
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01891831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006423518
127 https://doi.org/10.1007/bf01891831
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00453-008-9215-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032949578
130 https://doi.org/10.1007/s00453-008-9215-x
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.265893.3 schema:alternateName Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA
133 schema:name Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA
134 rdf:type schema:Organization