Improved Accuracy Of Cardiac Output Estimation By The Partial CO2 Rebreathing Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06

AUTHORS

Yoshifumi Kotake, Takashige Yamada, Hiromasa Nagata, Takeshi Suzuki, Ryohei Serita, Nobuyuki Katori, Junzo Takeda, Hideyuki Shimizu

ABSTRACT

OBJECTIVE: This study investigated the accuracy of the NICO monitor equipped with the newer software. Additionally, the effects of the increased dead space produced by the NICO monitor on ventilatory settings were investigated. METHODS: Forty-two patients undergoing elective aortic reconstruction participated in this prospective, observational study at a university hospital. Cardiac output was continuously monitored using both the NICO monitor and continuous cardiac output (CCO) measured by a pulmonary artery catheter. A NICO monitor equipped with ver. 4.2 software was used for the first 21 patients while a NICO monitor equipped with ver. 5.0 software was used for the rest of the patients. Cardiac output measured by bolus thermodilution (BCO) at 30 min intervals was used as a reference. RESULTS: The bias +/- precision of the NICO monitor was 0.18 +/- 0.88 l/min with ver. 4.2 software (n = 182) and 0.18 +/- 0.83 l/min with 5.0 software (n = 194). The accuracy of the NICO monitor is comparable to CCO, whose bias +/- precision against BCO is 0.19 +/- 0.81 l/min (n = 376). At the same level of CO(2) production and minute ventilation, PaCO(2) was lower in the patients monitored by NICO with ver. 5.0 software than patients with ver. 4.2 software. CONCLUSIONS: This study demonstrated the improved performance of the NICO monitor with updated software. The performance of the NICO monitor with ver. 4.2 or later software is similar to CCO. However, the cardiac output measurement did not fulfill the criteria of interchangeability to the cardiac output measurement by bolus thermodilution. Updates to ver. 5.0 attenuated the effects of rebreathing introduced by the NICO monitor without compromising the accuracy of the cardiac output measurement. More... »

PAGES

149-155

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10877-009-9172-1

DOI

http://dx.doi.org/10.1007/s10877-009-9172-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026410051

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19301132


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Capnography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Dioxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac Output", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Failure Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Toho University", 
          "id": "https://www.grid.ac/institutes/grid.265050.4", 
          "name": [
            "Department of Anesthesiology, Toho University, 6-11-1, Ohmori-Nishi, Ohta, 143-8541, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotake", 
        "givenName": "Yoshifumi", 
        "id": "sg:person.01152541616.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152541616.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Anesthesiology, School of Medicine, Keio University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Takashige", 
        "id": "sg:person.0733126002.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733126002.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Anesthesiology, School of Medicine, Keio University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagata", 
        "givenName": "Hiromasa", 
        "id": "sg:person.01250572370.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250572370.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Anesthesiology, School of Medicine, Keio University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Takeshi", 
        "id": "sg:person.01246214610.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246214610.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Anesthesiology, School of Medicine, Keio University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serita", 
        "givenName": "Ryohei", 
        "id": "sg:person.01164615536.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164615536.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Anesthesiology, School of Medicine, Keio University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katori", 
        "givenName": "Nobuyuki", 
        "id": "sg:person.01314330010.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314330010.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Anesthesiology, School of Medicine, Keio University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takeda", 
        "givenName": "Junzo", 
        "id": "sg:person.01126242156.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126242156.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Cardiovascular Surgery, School of Medicine, Keio University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimizu", 
        "givenName": "Hideyuki", 
        "id": "sg:person.01036221436.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036221436.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1009981313076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002765961", 
          "https://doi.org/10.1023/a:1009981313076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1399-6576.2001.045006680.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003115986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/01.ane.0000148697.28380.d5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004177261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/01.ane.0000148697.28380.d5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004177261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-003-2069-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007465186", 
          "https://doi.org/10.1007/s00134-003-2069-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-003-2069-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007465186", 
          "https://doi.org/10.1007/s00134-003-2069-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200201000-00021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008212820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200201000-00021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008212820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s026502150700110x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010844838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s026502150700110x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010844838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s026502150700110x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010844838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200304000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018928131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200304000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018928131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011403717822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023324255", 
          "https://doi.org/10.1023/a:1011403717822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10543400701329422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003246-199412000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025552492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003246-199412000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025552492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-002-1477-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026151386", 
          "https://doi.org/10.1007/s00134-002-1477-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200308000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029777463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200308000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029777463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.125.2.592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035270178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/jcan.2003.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037207562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/jcan.2003.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037207562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003246-199406000-00026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038841913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003246-199406000-00026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038841913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1399-6576.2002.460205.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039083823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009982611386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040257350", 
          "https://doi.org/10.1023/a:1009982611386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200304000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041183367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200304000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041183367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016373724642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041856333", 
          "https://doi.org/10.1023/a:1016373724642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/cc3801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049853053", 
          "https://doi.org/10.1186/cc3801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/096228099673819272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074693116", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0310057x0002800412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074693116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0310057x0002800412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074693116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0310057x0002800412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074693116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228029900800204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090525344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228029900800204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090525344"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "OBJECTIVE: This study investigated the accuracy of the NICO monitor equipped with the newer software. Additionally, the effects of the increased dead space produced by the NICO monitor on ventilatory settings were investigated.\nMETHODS: Forty-two patients undergoing elective aortic reconstruction participated in this prospective, observational study at a university hospital. Cardiac output was continuously monitored using both the NICO monitor and continuous cardiac output (CCO) measured by a pulmonary artery catheter. A NICO monitor equipped with ver. 4.2 software was used for the first 21 patients while a NICO monitor equipped with ver. 5.0 software was used for the rest of the patients. Cardiac output measured by bolus thermodilution (BCO) at 30 min intervals was used as a reference.\nRESULTS: The bias +/- precision of the NICO monitor was 0.18 +/- 0.88 l/min with ver. 4.2 software (n = 182) and 0.18 +/- 0.83 l/min with 5.0 software (n = 194). The accuracy of the NICO monitor is comparable to CCO, whose bias +/- precision against BCO is 0.19 +/- 0.81 l/min (n = 376). At the same level of CO(2) production and minute ventilation, PaCO(2) was lower in the patients monitored by NICO with ver. 5.0 software than patients with ver. 4.2 software.\nCONCLUSIONS: This study demonstrated the improved performance of the NICO monitor with updated software. The performance of the NICO monitor with ver. 4.2 or later software is similar to CCO. However, the cardiac output measurement did not fulfill the criteria of interchangeability to the cardiac output measurement by bolus thermodilution. Updates to ver. 5.0 attenuated the effects of rebreathing introduced by the NICO monitor without compromising the accuracy of the cardiac output measurement.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10877-009-9172-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1118054", 
        "issn": [
          "1387-1307", 
          "1573-2614"
        ], 
        "name": "Journal of Clinical Monitoring and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Improved Accuracy Of Cardiac Output Estimation By The Partial CO2 Rebreathing Method", 
    "pagination": "149-155", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7dd0e4e2439f4d80569f83b0fc40d9c7fb3096962810010ab695827986fdce22"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19301132"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9806357"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10877-009-9172-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026410051"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10877-009-9172-1", 
      "https://app.dimensions.ai/details/publication/pub.1026410051"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10877-009-9172-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10877-009-9172-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10877-009-9172-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10877-009-9172-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10877-009-9172-1'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      67 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10877-009-9172-1 schema:about N016d09bfa91e490b90946443cb9aa8b8
2 N27c06f34edbd4fc48c919cc9a6c3dcd6
3 N283e2bbf6c49402a81df772609b90a48
4 N67c3cf1015074b278c14b2d8cb0ca2f7
5 N830bd3d3ada84593971c1e1e8428c2cd
6 N9c17b19c2ff2442e8efa2147639ec786
7 N9ff2e8f0e766402a9a1d5d3de8d0379d
8 Na20b351334564fe78f5977ac5924bdb5
9 Na9dd99d2bd4f4ed286bf707df7e9b8b9
10 Nc4743d018eb44ac2b07abbbe4b742c6c
11 Nd9ec31b0450146728babe1175c9df568
12 Ndf87d0fa1ab84eb0bebead30451466c3
13 Nef312c4478054610b5f22299f3f38c24
14 Nf922ebf650bc4034b4e71ecdd1501fa6
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author N97482d99b11047a78c7e18409b5b2738
18 schema:citation sg:pub.10.1007/s00134-002-1477-1
19 sg:pub.10.1007/s00134-003-2069-4
20 sg:pub.10.1023/a:1009981313076
21 sg:pub.10.1023/a:1009982611386
22 sg:pub.10.1023/a:1011403717822
23 sg:pub.10.1023/a:1016373724642
24 sg:pub.10.1186/cc3801
25 https://app.dimensions.ai/details/publication/pub.1074693116
26 https://doi.org/10.1017/s026502150700110x
27 https://doi.org/10.1034/j.1399-6576.2001.045006680.x
28 https://doi.org/10.1034/j.1399-6576.2002.460205.x
29 https://doi.org/10.1053/jcan.2003.49
30 https://doi.org/10.1080/10543400701329422
31 https://doi.org/10.1097/00000542-200201000-00021
32 https://doi.org/10.1097/00000542-200304000-00007
33 https://doi.org/10.1097/00000542-200304000-00014
34 https://doi.org/10.1097/00000542-200308000-00009
35 https://doi.org/10.1097/00003246-199406000-00026
36 https://doi.org/10.1097/00003246-199412000-00004
37 https://doi.org/10.1177/0310057x0002800412
38 https://doi.org/10.1177/096228029900800204
39 https://doi.org/10.1191/096228099673819272
40 https://doi.org/10.1213/01.ane.0000148697.28380.d5
41 https://doi.org/10.1378/chest.125.2.592
42 schema:datePublished 2009-06
43 schema:datePublishedReg 2009-06-01
44 schema:description OBJECTIVE: This study investigated the accuracy of the NICO monitor equipped with the newer software. Additionally, the effects of the increased dead space produced by the NICO monitor on ventilatory settings were investigated. METHODS: Forty-two patients undergoing elective aortic reconstruction participated in this prospective, observational study at a university hospital. Cardiac output was continuously monitored using both the NICO monitor and continuous cardiac output (CCO) measured by a pulmonary artery catheter. A NICO monitor equipped with ver. 4.2 software was used for the first 21 patients while a NICO monitor equipped with ver. 5.0 software was used for the rest of the patients. Cardiac output measured by bolus thermodilution (BCO) at 30 min intervals was used as a reference. RESULTS: The bias +/- precision of the NICO monitor was 0.18 +/- 0.88 l/min with ver. 4.2 software (n = 182) and 0.18 +/- 0.83 l/min with 5.0 software (n = 194). The accuracy of the NICO monitor is comparable to CCO, whose bias +/- precision against BCO is 0.19 +/- 0.81 l/min (n = 376). At the same level of CO(2) production and minute ventilation, PaCO(2) was lower in the patients monitored by NICO with ver. 5.0 software than patients with ver. 4.2 software. CONCLUSIONS: This study demonstrated the improved performance of the NICO monitor with updated software. The performance of the NICO monitor with ver. 4.2 or later software is similar to CCO. However, the cardiac output measurement did not fulfill the criteria of interchangeability to the cardiac output measurement by bolus thermodilution. Updates to ver. 5.0 attenuated the effects of rebreathing introduced by the NICO monitor without compromising the accuracy of the cardiac output measurement.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N115b0cd3fc55491b84ada291da18dfc7
49 N9406a56eeb2f4e49ae64c116c2b2df78
50 sg:journal.1118054
51 schema:name Improved Accuracy Of Cardiac Output Estimation By The Partial CO2 Rebreathing Method
52 schema:pagination 149-155
53 schema:productId N075613a6813b42ac833a295544224a8f
54 N30a9c86b4cce46439be05058012569b3
55 N314ff31848344b038aa872430f5a5dd8
56 N5d9a7de76d774a789e258f9d989f1549
57 N7a45fa8e352443b2940006d56358127e
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026410051
59 https://doi.org/10.1007/s10877-009-9172-1
60 schema:sdDatePublished 2019-04-11T09:54
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N05358e4eee1146a9af114c3dc1b28e81
63 schema:url https://link.springer.com/10.1007%2Fs10877-009-9172-1
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N016d09bfa91e490b90946443cb9aa8b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Female
69 rdf:type schema:DefinedTerm
70 N05358e4eee1146a9af114c3dc1b28e81 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N075613a6813b42ac833a295544224a8f schema:name dimensions_id
73 schema:value pub.1026410051
74 rdf:type schema:PropertyValue
75 N0d6c1fbce0e3419787401bdc339f22de rdf:first sg:person.01314330010.00
76 rdf:rest N4a4256175f2b4f71b0b346810cc17c4b
77 N115b0cd3fc55491b84ada291da18dfc7 schema:issueNumber 3
78 rdf:type schema:PublicationIssue
79 N27c06f34edbd4fc48c919cc9a6c3dcd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Cardiac Output
81 rdf:type schema:DefinedTerm
82 N283e2bbf6c49402a81df772609b90a48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Sensitivity and Specificity
84 rdf:type schema:DefinedTerm
85 N30a9c86b4cce46439be05058012569b3 schema:name doi
86 schema:value 10.1007/s10877-009-9172-1
87 rdf:type schema:PropertyValue
88 N314ff31848344b038aa872430f5a5dd8 schema:name nlm_unique_id
89 schema:value 9806357
90 rdf:type schema:PropertyValue
91 N4a4256175f2b4f71b0b346810cc17c4b rdf:first sg:person.01126242156.09
92 rdf:rest Nd61e35cc5a914681b3dc34ab59233563
93 N5d9a7de76d774a789e258f9d989f1549 schema:name pubmed_id
94 schema:value 19301132
95 rdf:type schema:PropertyValue
96 N67c3cf1015074b278c14b2d8cb0ca2f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Algorithms
98 rdf:type schema:DefinedTerm
99 N7a45fa8e352443b2940006d56358127e schema:name readcube_id
100 schema:value 7dd0e4e2439f4d80569f83b0fc40d9c7fb3096962810010ab695827986fdce22
101 rdf:type schema:PropertyValue
102 N830bd3d3ada84593971c1e1e8428c2cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Equipment Failure Analysis
104 rdf:type schema:DefinedTerm
105 N9406a56eeb2f4e49ae64c116c2b2df78 schema:volumeNumber 23
106 rdf:type schema:PublicationVolume
107 N97482d99b11047a78c7e18409b5b2738 rdf:first sg:person.01152541616.60
108 rdf:rest Nc8498bfa346844ce8709b32a3b4d730b
109 N9c17b19c2ff2442e8efa2147639ec786 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Capnography
111 rdf:type schema:DefinedTerm
112 N9ff2e8f0e766402a9a1d5d3de8d0379d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Aged
114 rdf:type schema:DefinedTerm
115 Na20b351334564fe78f5977ac5924bdb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Reproducibility of Results
117 rdf:type schema:DefinedTerm
118 Na33d6947d2cc46fe825ea409faf6a9b0 rdf:first sg:person.01246214610.72
119 rdf:rest Nf4fa9a8b5f094e67b6fb35c74c1792fb
120 Na9dd99d2bd4f4ed286bf707df7e9b8b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Diagnosis, Computer-Assisted
122 rdf:type schema:DefinedTerm
123 Nc4743d018eb44ac2b07abbbe4b742c6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Software
125 rdf:type schema:DefinedTerm
126 Nc8498bfa346844ce8709b32a3b4d730b rdf:first sg:person.0733126002.25
127 rdf:rest Nef7f9dd3c4c243f9bb86a1568b8a3503
128 Nd61e35cc5a914681b3dc34ab59233563 rdf:first sg:person.01036221436.20
129 rdf:rest rdf:nil
130 Nd9ec31b0450146728babe1175c9df568 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Equipment Design
132 rdf:type schema:DefinedTerm
133 Ndf87d0fa1ab84eb0bebead30451466c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Carbon Dioxide
135 rdf:type schema:DefinedTerm
136 Nef312c4478054610b5f22299f3f38c24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Humans
138 rdf:type schema:DefinedTerm
139 Nef7f9dd3c4c243f9bb86a1568b8a3503 rdf:first sg:person.01250572370.06
140 rdf:rest Na33d6947d2cc46fe825ea409faf6a9b0
141 Nf4fa9a8b5f094e67b6fb35c74c1792fb rdf:first sg:person.01164615536.61
142 rdf:rest N0d6c1fbce0e3419787401bdc339f22de
143 Nf922ebf650bc4034b4e71ecdd1501fa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Male
145 rdf:type schema:DefinedTerm
146 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
147 schema:name Medical and Health Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
150 schema:name Cardiorespiratory Medicine and Haematology
151 rdf:type schema:DefinedTerm
152 sg:journal.1118054 schema:issn 1387-1307
153 1573-2614
154 schema:name Journal of Clinical Monitoring and Computing
155 rdf:type schema:Periodical
156 sg:person.01036221436.20 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
157 schema:familyName Shimizu
158 schema:givenName Hideyuki
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036221436.20
160 rdf:type schema:Person
161 sg:person.01126242156.09 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
162 schema:familyName Takeda
163 schema:givenName Junzo
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126242156.09
165 rdf:type schema:Person
166 sg:person.01152541616.60 schema:affiliation https://www.grid.ac/institutes/grid.265050.4
167 schema:familyName Kotake
168 schema:givenName Yoshifumi
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152541616.60
170 rdf:type schema:Person
171 sg:person.01164615536.61 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
172 schema:familyName Serita
173 schema:givenName Ryohei
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164615536.61
175 rdf:type schema:Person
176 sg:person.01246214610.72 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
177 schema:familyName Suzuki
178 schema:givenName Takeshi
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246214610.72
180 rdf:type schema:Person
181 sg:person.01250572370.06 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
182 schema:familyName Nagata
183 schema:givenName Hiromasa
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250572370.06
185 rdf:type schema:Person
186 sg:person.01314330010.00 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
187 schema:familyName Katori
188 schema:givenName Nobuyuki
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314330010.00
190 rdf:type schema:Person
191 sg:person.0733126002.25 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
192 schema:familyName Yamada
193 schema:givenName Takashige
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733126002.25
195 rdf:type schema:Person
196 sg:pub.10.1007/s00134-002-1477-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026151386
197 https://doi.org/10.1007/s00134-002-1477-1
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00134-003-2069-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007465186
200 https://doi.org/10.1007/s00134-003-2069-4
201 rdf:type schema:CreativeWork
202 sg:pub.10.1023/a:1009981313076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002765961
203 https://doi.org/10.1023/a:1009981313076
204 rdf:type schema:CreativeWork
205 sg:pub.10.1023/a:1009982611386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040257350
206 https://doi.org/10.1023/a:1009982611386
207 rdf:type schema:CreativeWork
208 sg:pub.10.1023/a:1011403717822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023324255
209 https://doi.org/10.1023/a:1011403717822
210 rdf:type schema:CreativeWork
211 sg:pub.10.1023/a:1016373724642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041856333
212 https://doi.org/10.1023/a:1016373724642
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/cc3801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049853053
215 https://doi.org/10.1186/cc3801
216 rdf:type schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1074693116 schema:CreativeWork
218 https://doi.org/10.1017/s026502150700110x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010844838
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1034/j.1399-6576.2001.045006680.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003115986
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1034/j.1399-6576.2002.460205.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039083823
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1053/jcan.2003.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037207562
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1080/10543400701329422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097934
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1097/00000542-200201000-00021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008212820
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1097/00000542-200304000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018928131
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1097/00000542-200304000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041183367
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1097/00000542-200308000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029777463
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1097/00003246-199406000-00026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038841913
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1097/00003246-199412000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025552492
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1177/0310057x0002800412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074693116
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1177/096228029900800204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090525344
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1191/096228099673819272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155357
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1213/01.ane.0000148697.28380.d5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004177261
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1378/chest.125.2.592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035270178
249 rdf:type schema:CreativeWork
250 https://www.grid.ac/institutes/grid.26091.3c schema:alternateName Keio University
251 schema:name Department of Anesthesiology, School of Medicine, Keio University, Tokyo, Japan
252 Department of Cardiovascular Surgery, School of Medicine, Keio University, Tokyo, Japan
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.265050.4 schema:alternateName Toho University
255 schema:name Department of Anesthesiology, Toho University, 6-11-1, Ohmori-Nishi, Ohta, 143-8541, Tokyo, Japan
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...