Dispersion of ZnO Nanoparticles in a Mixture of Ethylene Glycol–Water, Exploration of Temperature-Dependent Density, and Sensitivity Analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12

AUTHORS

Omid Mahian, Ali Kianifar, Somchai Wongwises

ABSTRACT

Experimental studies are performed to evaluate the stability of zinc oxide (ZnO) nanoparticles suspended in a mixture of ethylene glycol and water with weight ratio of 40–60 as the base fluid. Different methods have been employed to disperse ZnO nanoparticles. It is found that using Gum Arabic leads to clustering and settle the nanoparticles. Also, the use of DI ammonium hydrogen citrate with weight ratio 1:1 (surfactant:nanoparticles) gives the acceptable stability. The density of nanofluids is measured and the results are compared with theoretical results. A helpful correlation for the measured densities of the stable nanofluids in a temperature range of 25–40 °C is presented which can used in practical applications. Finally based on the correlation a sensitivity analysis has been done. It is found that at higher temperatures the density is more sensitive to the increases in volume fraction. More... »

PAGES

1103-1114

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10876-013-0601-4

DOI

http://dx.doi.org/10.1007/s10876-013-0601-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050283488


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahian", 
        "givenName": "Omid", 
        "id": "sg:person.011516505301.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kianifar", 
        "givenName": "Ali", 
        "id": "sg:person.07702137663.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07702137663.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.powtec.2013.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006216772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4754271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007539237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jct.2012.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010593405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011123003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2011.12.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011705853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2009.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011875639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012272228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2010.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015566638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/20/30/305706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015711609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/20/30/305706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015711609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2010.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017617891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018733211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2009.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019698084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2011.10.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025277946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2013.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028570911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jct.2012.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032188482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2010.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033122535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2012.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034209655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2012.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038516085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2010.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038750180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2010.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047375459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2012.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052416862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10916460701857714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052878645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2011.11.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053490134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1573413711309020010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069213307"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "Experimental studies are performed to evaluate the stability of zinc oxide (ZnO) nanoparticles suspended in a mixture of ethylene glycol and water with weight ratio of 40\u201360 as the base fluid. Different methods have been employed to disperse ZnO nanoparticles. It is found that using Gum Arabic leads to clustering and settle the nanoparticles. Also, the use of DI ammonium hydrogen citrate with weight ratio 1:1 (surfactant:nanoparticles) gives the acceptable stability. The density of nanofluids is measured and the results are compared with theoretical results. A helpful correlation for the measured densities of the stable nanofluids in a temperature range of 25\u201340 \u00b0C is presented which can used in practical applications. Finally based on the correlation a sensitivity analysis has been done. It is found that at higher temperatures the density is more sensitive to the increases in volume fraction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10876-013-0601-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1130720", 
        "issn": [
          "1040-7278", 
          "1572-8862"
        ], 
        "name": "Journal of Cluster Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Dispersion of ZnO Nanoparticles in a Mixture of Ethylene Glycol\u2013Water, Exploration of Temperature-Dependent Density, and Sensitivity Analysis", 
    "pagination": "1103-1114", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef891e8a69d703161e866facefb7d3d18a3276bb441ba0bc8e8f45cdbfa1dddc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10876-013-0601-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050283488"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10876-013-0601-4", 
      "https://app.dimensions.ai/details/publication/pub.1050283488"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000491.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10876-013-0601-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10876-013-0601-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10876-013-0601-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10876-013-0601-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10876-013-0601-4'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10876-013-0601-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N78cf094580f54c38b06b038321198f5a
4 schema:citation https://doi.org/10.1016/j.apenergy.2011.11.026
5 https://doi.org/10.1016/j.apenergy.2011.12.101
6 https://doi.org/10.1016/j.applthermaleng.2011.10.066
7 https://doi.org/10.1016/j.apt.2010.02.002
8 https://doi.org/10.1016/j.cplett.2013.01.044
9 https://doi.org/10.1016/j.ijheatfluidflow.2010.01.011
10 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
11 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
12 https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.032
13 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
14 https://doi.org/10.1016/j.ijthermalsci.2012.07.011
15 https://doi.org/10.1016/j.jct.2012.03.010
16 https://doi.org/10.1016/j.jct.2012.10.014
17 https://doi.org/10.1016/j.matchemphys.2010.01.020
18 https://doi.org/10.1016/j.powtec.2009.03.025
19 https://doi.org/10.1016/j.powtec.2013.01.039
20 https://doi.org/10.1016/j.rser.2010.11.035
21 https://doi.org/10.1016/j.tca.2009.03.007
22 https://doi.org/10.1016/j.tca.2010.02.007
23 https://doi.org/10.1016/j.tca.2012.01.010
24 https://doi.org/10.1016/j.tca.2012.02.016
25 https://doi.org/10.1063/1.4754271
26 https://doi.org/10.1080/10916460701857714
27 https://doi.org/10.1088/0957-4484/20/30/305706
28 https://doi.org/10.2174/1573413711309020010
29 schema:datePublished 2013-12
30 schema:datePublishedReg 2013-12-01
31 schema:description Experimental studies are performed to evaluate the stability of zinc oxide (ZnO) nanoparticles suspended in a mixture of ethylene glycol and water with weight ratio of 40–60 as the base fluid. Different methods have been employed to disperse ZnO nanoparticles. It is found that using Gum Arabic leads to clustering and settle the nanoparticles. Also, the use of DI ammonium hydrogen citrate with weight ratio 1:1 (surfactant:nanoparticles) gives the acceptable stability. The density of nanofluids is measured and the results are compared with theoretical results. A helpful correlation for the measured densities of the stable nanofluids in a temperature range of 25–40 °C is presented which can used in practical applications. Finally based on the correlation a sensitivity analysis has been done. It is found that at higher temperatures the density is more sensitive to the increases in volume fraction.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N6debe3905307422988f7200651f75edb
36 N8fbfef4c5d984cc2b6e1a1943352fee5
37 sg:journal.1130720
38 schema:name Dispersion of ZnO Nanoparticles in a Mixture of Ethylene Glycol–Water, Exploration of Temperature-Dependent Density, and Sensitivity Analysis
39 schema:pagination 1103-1114
40 schema:productId N0dbe8cb9a7894c44b4ae0f9a97ef0993
41 N465eb21d6095466eb51a0e383e1a11a2
42 N513aeb78220b473b85a28e85411606d4
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283488
44 https://doi.org/10.1007/s10876-013-0601-4
45 schema:sdDatePublished 2019-04-10T22:27
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nc2cfb5311c1e47d4a50a1659cc247c6d
48 schema:url http://link.springer.com/10.1007/s10876-013-0601-4
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0dbe8cb9a7894c44b4ae0f9a97ef0993 schema:name readcube_id
53 schema:value ef891e8a69d703161e866facefb7d3d18a3276bb441ba0bc8e8f45cdbfa1dddc
54 rdf:type schema:PropertyValue
55 N3d9be26cf28141539f6d82e7cbf70b92 rdf:first sg:person.07702137663.11
56 rdf:rest N99818619c8af47148981c95e09e2ff63
57 N465eb21d6095466eb51a0e383e1a11a2 schema:name doi
58 schema:value 10.1007/s10876-013-0601-4
59 rdf:type schema:PropertyValue
60 N513aeb78220b473b85a28e85411606d4 schema:name dimensions_id
61 schema:value pub.1050283488
62 rdf:type schema:PropertyValue
63 N6debe3905307422988f7200651f75edb schema:issueNumber 4
64 rdf:type schema:PublicationIssue
65 N78cf094580f54c38b06b038321198f5a rdf:first sg:person.011516505301.04
66 rdf:rest N3d9be26cf28141539f6d82e7cbf70b92
67 N8fbfef4c5d984cc2b6e1a1943352fee5 schema:volumeNumber 24
68 rdf:type schema:PublicationVolume
69 N99818619c8af47148981c95e09e2ff63 rdf:first sg:person.012267021412.00
70 rdf:rest rdf:nil
71 Nc2cfb5311c1e47d4a50a1659cc247c6d schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Chemistry (incl. Structural)
78 rdf:type schema:DefinedTerm
79 sg:journal.1130720 schema:issn 1040-7278
80 1572-8862
81 schema:name Journal of Cluster Science
82 rdf:type schema:Periodical
83 sg:person.011516505301.04 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
84 schema:familyName Mahian
85 schema:givenName Omid
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04
87 rdf:type schema:Person
88 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
89 schema:familyName Wongwises
90 schema:givenName Somchai
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
92 rdf:type schema:Person
93 sg:person.07702137663.11 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
94 schema:familyName Kianifar
95 schema:givenName Ali
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07702137663.11
97 rdf:type schema:Person
98 https://doi.org/10.1016/j.apenergy.2011.11.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053490134
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.apenergy.2011.12.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011705853
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.applthermaleng.2011.10.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025277946
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.apt.2010.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033122535
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.cplett.2013.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028570911
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.ijheatfluidflow.2010.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047375459
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018733211
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011123003
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012272228
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319087
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ijthermalsci.2012.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052416862
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jct.2012.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010593405
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jct.2012.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032188482
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.matchemphys.2010.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038750180
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.powtec.2009.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011875639
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.powtec.2013.01.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006216772
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.rser.2010.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015566638
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.tca.2009.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019698084
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.tca.2010.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017617891
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.tca.2012.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034209655
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.tca.2012.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038516085
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.4754271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007539237
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/10916460701857714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052878645
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/0957-4484/20/30/305706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015711609
145 rdf:type schema:CreativeWork
146 https://doi.org/10.2174/1573413711309020010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069213307
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
149 schema:name Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
152 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...