Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11-15

AUTHORS

U.C. Dumka, S. Tiwari, D.G. Kaskaoutis, P.K. Hopke, Jagvir Singh, A.K. Srivastava, D.S. Bisht, S.D. Attri, S. Tyagi, A. Misra, G.S. Munawar Pasha

ABSTRACT

Haze-fog conditions over northern India are associated with visibility degradation and severe attenuation of solar radiation by airborne particles with various chemical compositions. PM2.5 samples have been collected in Delhi, India from December 2011 to November 2012 and analyzed for carbonaceous and inorganic species. PM10 measurements were made simultaneously such that PM10–2.5 could be estimated by difference. This study analyzes the temporal variation of PM2.5 and carbonaceous particles (CP), focusing on identification of the primary and secondary aerosol emissions, estimations of light extinction coefficient (bext) and the contributions by the major PM2.5 chemical components. The annual mean concentrations of PM2.5, organic carbon (OC), elemental carbon (EC) and PM10–2.5 were found to be 153.6 ± 59.8, 33.5 ± 15.9, 6.9 ± 3.9 and 91.1 ± 99.9 μg m−3, respectively. Total CP, secondary organic aerosols and major anions (e.g., SO42− and NO3−) maximize during the post-monsoon and winter due to fossil fuel combustion and biomass burning. PM10–2.5 is more abundant during the pre-monsoon and post-monsoon. The OC/EC varies from 2.45 to 9.26 (mean of 5.18 ± 1.47), indicating the influence of multiple combustion sources. The bext exhibits highest values (910 ± 280 and 1221 ± 371 Mm−1) in post-monsoon and winter and lowest in monsoon (363 ± 110 and 457 ± 133 Mm−1) as estimated via the original and revised IMPROVE algorithms, respectively. Organic matter (OM =1.6 × OC) accounts for ~39 % and ~48 % of the bext, followed by (NH4)2SO4 (~21 % and ~24 %) and EC (~13 % and ~10 %), according to the original and revised algorithms, respectively. The bext estimates via the two IMPROVE versions are highly correlated (R2 = 0.95, root mean square error = 38 % and mean bias error = 28 %) and are strongly related to visibility impairment (r = −0.72), mostly associated with anthropogenic rather than natural PM contributions. Therefore, reduction of CP and precursor gas emissions represents an urgent opportunity for air quality improvement across Delhi. More... »

PAGES

423-450

References to SciGraph publications

  • 2011-08-27. Statistical evaluation of PM10 and distribution of PM1, PM2.5, and PM10 in ambient air due to extreme fireworks episodes (Deepawali festivals) in megacity Delhi in NATURAL HAZARDS
  • 2009-04. Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India in JOURNAL OF ATMOSPHERIC CHEMISTRY
  • 2015-03-11. Study of the carbonaceous aerosol and morphological analysis of fine particles along with their mixing state in Delhi, India: a case study in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2012-10-14. Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability in NATURAL HAZARDS
  • 2015-01-09. Heavy Metal Contamination in Street Dusts with Various Land Uses in Zahedan, Iran in BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
  • 2008-03. Influence of natural and anthropogenic activities on UV Index variations – a study over tropical urban region using ground based observations and satellite data in JOURNAL OF ATMOSPHERIC CHEMISTRY
  • 2015-09-16. Air quality and human health improvements from reductions in deforestation-related fire in Brazil in NATURE GEOSCIENCE
  • 2011-11-22. Seasonal Trends of PM2.5 and PM10 in Ambient Air and Their Correlation in Ambient Air of Lucknow City, India in BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
  • 2015-10-26. Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India in NATURAL HAZARDS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10874-016-9350-8

    DOI

    http://dx.doi.org/10.1007/s10874-016-9350-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033914634


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, 200 433, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Aryabhatta Research Institute of Observational Sciences (ARIES), 263 001, Nainital, Uttarakhand, India", 
                "Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, 200 433, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dumka", 
            "givenName": "U.C.", 
            "id": "sg:person.012532346571.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532346571.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Tropical Meteorology, Branch, 110 001, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.417983.0", 
              "name": [
                "Indian Institute of Tropical Meteorology, Branch, 110 001, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tiwari", 
            "givenName": "S.", 
            "id": "sg:person.01257207416.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257207416.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, -11810, Athens, GR, Greece", 
              "id": "http://www.grid.ac/institutes/grid.8663.b", 
              "name": [
                "Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, -11810, Athens, GR, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaskaoutis", 
            "givenName": "D.G.", 
            "id": "sg:person.012053552043.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053552043.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Clarkson University, Box 5708, 13699-5708, Potsdam, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.254280.9", 
              "name": [
                "Clarkson University, Box 5708, 13699-5708, Potsdam, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hopke", 
            "givenName": "P.K.", 
            "id": "sg:person.0716153551.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716153551.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Earth System Science Organization, Ministry of Earth Sciences, 110 003, Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.453080.a", 
              "name": [
                "Earth System Science Organization, Ministry of Earth Sciences, 110 003, Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Jagvir", 
            "id": "sg:person.015415767734.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415767734.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Tropical Meteorology, Branch, 110 001, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.417983.0", 
              "name": [
                "Indian Institute of Tropical Meteorology, Branch, 110 001, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srivastava", 
            "givenName": "A.K.", 
            "id": "sg:person.0602123407.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602123407.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Tropical Meteorology, Branch, 110 001, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.417983.0", 
              "name": [
                "Indian Institute of Tropical Meteorology, Branch, 110 001, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bisht", 
            "givenName": "D.S.", 
            "id": "sg:person.0764465207.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764465207.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "India Meteorological Department, 110 003, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "India Meteorological Department, 110 003, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Attri", 
            "givenName": "S.D.", 
            "id": "sg:person.016114157161.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114157161.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Vocational Studies & Applied Sciences, 201 303, Gautam Buddha University, India", 
              "id": "http://www.grid.ac/institutes/grid.448827.5", 
              "name": [
                "School of Vocational Studies & Applied Sciences, 201 303, Gautam Buddha University, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tyagi", 
            "givenName": "S.", 
            "id": "sg:person.015657536527.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657536527.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Vocational Studies & Applied Sciences, 201 303, Gautam Buddha University, India", 
              "id": "http://www.grid.ac/institutes/grid.448827.5", 
              "name": [
                "School of Vocational Studies & Applied Sciences, 201 303, Gautam Buddha University, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Misra", 
            "givenName": "A.", 
            "id": "sg:person.014134147467.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134147467.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College Ghosia College of Engineering Ramanagara, 562159, Karnataka, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "College Ghosia College of Engineering Ramanagara, 562159, Karnataka, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pasha", 
            "givenName": "G.S. Munawar", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00128-011-0466-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036391104", 
              "https://doi.org/10.1007/s00128-011-0466-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-015-4272-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042854950", 
              "https://doi.org/10.1007/s11356-015-4272-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-012-0449-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025110757", 
              "https://doi.org/10.1007/s11069-012-0449-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-011-9931-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021260855", 
              "https://doi.org/10.1007/s11069-011-9931-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00128-014-1453-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007929942", 
              "https://doi.org/10.1007/s00128-014-1453-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048977844", 
              "https://doi.org/10.1038/ngeo2535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-015-2049-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005255759", 
              "https://doi.org/10.1007/s11069-015-2049-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10874-008-9103-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009895521", 
              "https://doi.org/10.1007/s10874-008-9103-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10874-010-9148-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006059462", 
              "https://doi.org/10.1007/s10874-010-9148-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-11-15", 
        "datePublishedReg": "2016-11-15", 
        "description": "Haze-fog conditions over northern India are associated with visibility degradation and severe attenuation of solar radiation by airborne particles with various chemical compositions. PM2.5 samples have been collected in Delhi, India from December 2011 to November 2012 and analyzed for carbonaceous and inorganic species. PM10 measurements were made simultaneously such that PM10\u20132.5 could be estimated by difference. This study analyzes the temporal variation of PM2.5 and carbonaceous particles (CP), focusing on identification of the primary and secondary aerosol emissions, estimations of light extinction coefficient (bext) and the contributions by the major PM2.5 chemical components. The annual mean concentrations of PM2.5, organic carbon (OC), elemental carbon (EC) and PM10\u20132.5 were found to be 153.6\u00a0\u00b1\u00a059.8, 33.5\u00a0\u00b1\u00a015.9, 6.9\u00a0\u00b1\u00a03.9 and 91.1\u00a0\u00b1\u00a099.9\u00a0\u03bcg\u00a0m\u22123, respectively. Total CP, secondary organic aerosols and major anions (e.g., SO42\u2212 and NO3\u2212) maximize during the post-monsoon and winter due to fossil fuel combustion and biomass burning. PM10\u20132.5 is more abundant during the pre-monsoon and post-monsoon. The OC/EC varies from 2.45 to 9.26 (mean of 5.18\u00a0\u00b1\u00a01.47), indicating the influence of multiple combustion sources. The bext exhibits highest values (910\u00a0\u00b1\u00a0280 and 1221\u00a0\u00b1\u00a0371\u00a0Mm\u22121) in post-monsoon and winter and lowest in monsoon (363\u00a0\u00b1\u00a0110 and 457\u00a0\u00b1\u00a0133\u00a0Mm\u22121) as estimated via the original and revised IMPROVE algorithms, respectively. Organic matter (OM =1.6\u00a0\u00d7\u00a0OC) accounts for ~39\u00a0% and ~48\u00a0% of the bext, followed by (NH4)2SO4 (~21\u00a0% and ~24\u00a0%) and EC (~13\u00a0% and ~10\u00a0%), according to the original and revised algorithms, respectively. The bext estimates via the two IMPROVE versions are highly correlated (R2\u00a0=\u00a00.95, root mean square error\u00a0=\u00a038\u00a0% and mean bias error\u00a0=\u00a028\u00a0%) and are strongly related to visibility impairment (r\u00a0=\u00a0\u22120.72), mostly associated with anthropogenic rather than natural PM contributions. Therefore, reduction of CP and precursor gas emissions represents an urgent opportunity for air quality improvement across Delhi.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10874-016-9350-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1127423", 
            "issn": [
              "0167-7764", 
              "1573-0662"
            ], 
            "name": "Journal of Atmospheric Chemistry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "74"
          }
        ], 
        "keywords": [
          "carbonaceous particles", 
          "elemental carbon", 
          "secondary organic aerosol", 
          "chemical composition", 
          "extinction coefficient", 
          "PM2.5 chemical components", 
          "inorganic species", 
          "organic aerosol", 
          "organic carbon", 
          "precursor gas emissions", 
          "OC/EC", 
          "PM2.5 chemical composition", 
          "visibility degradation", 
          "fossil fuel combustion", 
          "chemical components", 
          "major anions", 
          "combustion sources", 
          "PM2.5 samples", 
          "organic matter", 
          "improve version", 
          "carbon", 
          "fuel combustion", 
          "biomass burning", 
          "airborne particles", 
          "anions", 
          "secondary emission", 
          "particles", 
          "visibility impairment", 
          "emission", 
          "degradation", 
          "composition", 
          "aerosol emissions", 
          "light extinction coefficient", 
          "annual mean concentrations", 
          "PM contribution", 
          "urgent opportunity", 
          "combustion", 
          "aerosols", 
          "IMPROVE algorithm", 
          "higher values", 
          "coefficient", 
          "concentration", 
          "solar radiation", 
          "samples", 
          "measurements", 
          "mean concentration", 
          "burning", 
          "PM2.5", 
          "species", 
          "Bext", 
          "gas emissions", 
          "air quality improvement", 
          "contribution", 
          "PM10", 
          "conditions", 
          "influence", 
          "reduction", 
          "radiation", 
          "matter", 
          "source", 
          "values", 
          "components", 
          "identification", 
          "study", 
          "variation", 
          "temporal variation", 
          "improvement", 
          "opportunities", 
          "PM10 measurements", 
          "differences", 
          "severe attenuation", 
          "winter", 
          "attenuation", 
          "estimation", 
          "assessment", 
          "estimates", 
          "Delhi", 
          "version", 
          "India", 
          "quality improvement", 
          "monsoon", 
          "northern India", 
          "algorithm", 
          "impairment", 
          "Haze-fog conditions", 
          "secondary aerosol emissions", 
          "major PM2.5 chemical components", 
          "Total CP", 
          "multiple combustion sources", 
          "bext estimates", 
          "natural PM contributions", 
          "reduction of CP"
        ], 
        "name": "Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation", 
        "pagination": "423-450", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033914634"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10874-016-9350-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10874-016-9350-8", 
          "https://app.dimensions.ai/details/publication/pub.1033914634"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_712.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10874-016-9350-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10874-016-9350-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10874-016-9350-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10874-016-9350-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10874-016-9350-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      22 PREDICATES      126 URIs      109 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10874-016-9350-8 schema:about anzsrc-for:03
    2 anzsrc-for:0399
    3 schema:author Na9c58ff997b646ed84a3f980cc629834
    4 schema:citation sg:pub.10.1007/s00128-011-0466-x
    5 sg:pub.10.1007/s00128-014-1453-9
    6 sg:pub.10.1007/s10874-008-9103-4
    7 sg:pub.10.1007/s10874-010-9148-z
    8 sg:pub.10.1007/s11069-011-9931-4
    9 sg:pub.10.1007/s11069-012-0449-1
    10 sg:pub.10.1007/s11069-015-2049-3
    11 sg:pub.10.1007/s11356-015-4272-6
    12 sg:pub.10.1038/ngeo2535
    13 schema:datePublished 2016-11-15
    14 schema:datePublishedReg 2016-11-15
    15 schema:description Haze-fog conditions over northern India are associated with visibility degradation and severe attenuation of solar radiation by airborne particles with various chemical compositions. PM2.5 samples have been collected in Delhi, India from December 2011 to November 2012 and analyzed for carbonaceous and inorganic species. PM10 measurements were made simultaneously such that PM10–2.5 could be estimated by difference. This study analyzes the temporal variation of PM2.5 and carbonaceous particles (CP), focusing on identification of the primary and secondary aerosol emissions, estimations of light extinction coefficient (bext) and the contributions by the major PM2.5 chemical components. The annual mean concentrations of PM2.5, organic carbon (OC), elemental carbon (EC) and PM10–2.5 were found to be 153.6 ± 59.8, 33.5 ± 15.9, 6.9 ± 3.9 and 91.1 ± 99.9 μg m−3, respectively. Total CP, secondary organic aerosols and major anions (e.g., SO42− and NO3−) maximize during the post-monsoon and winter due to fossil fuel combustion and biomass burning. PM10–2.5 is more abundant during the pre-monsoon and post-monsoon. The OC/EC varies from 2.45 to 9.26 (mean of 5.18 ± 1.47), indicating the influence of multiple combustion sources. The bext exhibits highest values (910 ± 280 and 1221 ± 371 Mm−1) in post-monsoon and winter and lowest in monsoon (363 ± 110 and 457 ± 133 Mm−1) as estimated via the original and revised IMPROVE algorithms, respectively. Organic matter (OM =1.6 × OC) accounts for ~39 % and ~48 % of the bext, followed by (NH4)2SO4 (~21 % and ~24 %) and EC (~13 % and ~10 %), according to the original and revised algorithms, respectively. The bext estimates via the two IMPROVE versions are highly correlated (R2 = 0.95, root mean square error = 38 % and mean bias error = 28 %) and are strongly related to visibility impairment (r = −0.72), mostly associated with anthropogenic rather than natural PM contributions. Therefore, reduction of CP and precursor gas emissions represents an urgent opportunity for air quality improvement across Delhi.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N09d50512b9b64bb69f3c7b1cf7cf2d6f
    20 Nf1e3d15414a5495bace1f9a970f163a6
    21 sg:journal.1127423
    22 schema:keywords Bext
    23 Delhi
    24 Haze-fog conditions
    25 IMPROVE algorithm
    26 India
    27 OC/EC
    28 PM contribution
    29 PM10
    30 PM10 measurements
    31 PM2.5
    32 PM2.5 chemical components
    33 PM2.5 chemical composition
    34 PM2.5 samples
    35 Total CP
    36 aerosol emissions
    37 aerosols
    38 air quality improvement
    39 airborne particles
    40 algorithm
    41 anions
    42 annual mean concentrations
    43 assessment
    44 attenuation
    45 bext estimates
    46 biomass burning
    47 burning
    48 carbon
    49 carbonaceous particles
    50 chemical components
    51 chemical composition
    52 coefficient
    53 combustion
    54 combustion sources
    55 components
    56 composition
    57 concentration
    58 conditions
    59 contribution
    60 degradation
    61 differences
    62 elemental carbon
    63 emission
    64 estimates
    65 estimation
    66 extinction coefficient
    67 fossil fuel combustion
    68 fuel combustion
    69 gas emissions
    70 higher values
    71 identification
    72 impairment
    73 improve version
    74 improvement
    75 influence
    76 inorganic species
    77 light extinction coefficient
    78 major PM2.5 chemical components
    79 major anions
    80 matter
    81 mean concentration
    82 measurements
    83 monsoon
    84 multiple combustion sources
    85 natural PM contributions
    86 northern India
    87 opportunities
    88 organic aerosol
    89 organic carbon
    90 organic matter
    91 particles
    92 precursor gas emissions
    93 quality improvement
    94 radiation
    95 reduction
    96 reduction of CP
    97 samples
    98 secondary aerosol emissions
    99 secondary emission
    100 secondary organic aerosol
    101 severe attenuation
    102 solar radiation
    103 source
    104 species
    105 study
    106 temporal variation
    107 urgent opportunity
    108 values
    109 variation
    110 version
    111 visibility degradation
    112 visibility impairment
    113 winter
    114 schema:name Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation
    115 schema:pagination 423-450
    116 schema:productId N979827feab36496a89998cf5f55d5d48
    117 Na5824882aa5d4f588f63dcd046aa0ed5
    118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033914634
    119 https://doi.org/10.1007/s10874-016-9350-8
    120 schema:sdDatePublished 2022-01-01T18:41
    121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    122 schema:sdPublisher N8abe93e2271f46b8beac750cb14564da
    123 schema:url https://doi.org/10.1007/s10874-016-9350-8
    124 sgo:license sg:explorer/license/
    125 sgo:sdDataset articles
    126 rdf:type schema:ScholarlyArticle
    127 N09d50512b9b64bb69f3c7b1cf7cf2d6f schema:volumeNumber 74
    128 rdf:type schema:PublicationVolume
    129 N1594952958f942f1b82b3aa43587ec8f rdf:first sg:person.015415767734.32
    130 rdf:rest N4675000485364d3897749bb0a34bbb49
    131 N3feba5b836d94903bb9bb0bf5f632227 rdf:first sg:person.0716153551.02
    132 rdf:rest N1594952958f942f1b82b3aa43587ec8f
    133 N430ae84c4e054d1fa851b4265ee58eaa schema:affiliation grid-institutes:None
    134 schema:familyName Pasha
    135 schema:givenName G.S. Munawar
    136 rdf:type schema:Person
    137 N4675000485364d3897749bb0a34bbb49 rdf:first sg:person.0602123407.10
    138 rdf:rest N82e6f33ac74c4da8868d5d08f97e9a94
    139 N4a181f1a4f3c45adbe905ed08c9644e1 rdf:first sg:person.014134147467.67
    140 rdf:rest N9045d0a9c22b4889b2199c77c7592a5d
    141 N73fe6aa46f5743b7b57a4474ba5a2e13 rdf:first sg:person.012053552043.65
    142 rdf:rest N3feba5b836d94903bb9bb0bf5f632227
    143 N82e6f33ac74c4da8868d5d08f97e9a94 rdf:first sg:person.0764465207.37
    144 rdf:rest Nc014924d78a14d03ab2a4beed3457b1f
    145 N8abe93e2271f46b8beac750cb14564da schema:name Springer Nature - SN SciGraph project
    146 rdf:type schema:Organization
    147 N9045d0a9c22b4889b2199c77c7592a5d rdf:first N430ae84c4e054d1fa851b4265ee58eaa
    148 rdf:rest rdf:nil
    149 N979827feab36496a89998cf5f55d5d48 schema:name doi
    150 schema:value 10.1007/s10874-016-9350-8
    151 rdf:type schema:PropertyValue
    152 Na5824882aa5d4f588f63dcd046aa0ed5 schema:name dimensions_id
    153 schema:value pub.1033914634
    154 rdf:type schema:PropertyValue
    155 Na9c58ff997b646ed84a3f980cc629834 rdf:first sg:person.012532346571.58
    156 rdf:rest Nd3b4e71b9108420d9e0d5e2a8d61a880
    157 Nb6d0fe1b3a544004a753175250edce54 rdf:first sg:person.015657536527.48
    158 rdf:rest N4a181f1a4f3c45adbe905ed08c9644e1
    159 Nc014924d78a14d03ab2a4beed3457b1f rdf:first sg:person.016114157161.68
    160 rdf:rest Nb6d0fe1b3a544004a753175250edce54
    161 Nd3b4e71b9108420d9e0d5e2a8d61a880 rdf:first sg:person.01257207416.35
    162 rdf:rest N73fe6aa46f5743b7b57a4474ba5a2e13
    163 Nf1e3d15414a5495bace1f9a970f163a6 schema:issueNumber 4
    164 rdf:type schema:PublicationIssue
    165 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Chemical Sciences
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Other Chemical Sciences
    170 rdf:type schema:DefinedTerm
    171 sg:journal.1127423 schema:issn 0167-7764
    172 1573-0662
    173 schema:name Journal of Atmospheric Chemistry
    174 schema:publisher Springer Nature
    175 rdf:type schema:Periodical
    176 sg:person.012053552043.65 schema:affiliation grid-institutes:grid.8663.b
    177 schema:familyName Kaskaoutis
    178 schema:givenName D.G.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053552043.65
    180 rdf:type schema:Person
    181 sg:person.012532346571.58 schema:affiliation grid-institutes:grid.8547.e
    182 schema:familyName Dumka
    183 schema:givenName U.C.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532346571.58
    185 rdf:type schema:Person
    186 sg:person.01257207416.35 schema:affiliation grid-institutes:grid.417983.0
    187 schema:familyName Tiwari
    188 schema:givenName S.
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257207416.35
    190 rdf:type schema:Person
    191 sg:person.014134147467.67 schema:affiliation grid-institutes:grid.448827.5
    192 schema:familyName Misra
    193 schema:givenName A.
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134147467.67
    195 rdf:type schema:Person
    196 sg:person.015415767734.32 schema:affiliation grid-institutes:grid.453080.a
    197 schema:familyName Singh
    198 schema:givenName Jagvir
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415767734.32
    200 rdf:type schema:Person
    201 sg:person.015657536527.48 schema:affiliation grid-institutes:grid.448827.5
    202 schema:familyName Tyagi
    203 schema:givenName S.
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657536527.48
    205 rdf:type schema:Person
    206 sg:person.016114157161.68 schema:affiliation grid-institutes:grid.466772.6
    207 schema:familyName Attri
    208 schema:givenName S.D.
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114157161.68
    210 rdf:type schema:Person
    211 sg:person.0602123407.10 schema:affiliation grid-institutes:grid.417983.0
    212 schema:familyName Srivastava
    213 schema:givenName A.K.
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602123407.10
    215 rdf:type schema:Person
    216 sg:person.0716153551.02 schema:affiliation grid-institutes:grid.254280.9
    217 schema:familyName Hopke
    218 schema:givenName P.K.
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716153551.02
    220 rdf:type schema:Person
    221 sg:person.0764465207.37 schema:affiliation grid-institutes:grid.417983.0
    222 schema:familyName Bisht
    223 schema:givenName D.S.
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764465207.37
    225 rdf:type schema:Person
    226 sg:pub.10.1007/s00128-011-0466-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036391104
    227 https://doi.org/10.1007/s00128-011-0466-x
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00128-014-1453-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007929942
    230 https://doi.org/10.1007/s00128-014-1453-9
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s10874-008-9103-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009895521
    233 https://doi.org/10.1007/s10874-008-9103-4
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s10874-010-9148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006059462
    236 https://doi.org/10.1007/s10874-010-9148-z
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s11069-011-9931-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021260855
    239 https://doi.org/10.1007/s11069-011-9931-4
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s11069-012-0449-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025110757
    242 https://doi.org/10.1007/s11069-012-0449-1
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s11069-015-2049-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005255759
    245 https://doi.org/10.1007/s11069-015-2049-3
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s11356-015-4272-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854950
    248 https://doi.org/10.1007/s11356-015-4272-6
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ngeo2535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048977844
    251 https://doi.org/10.1038/ngeo2535
    252 rdf:type schema:CreativeWork
    253 grid-institutes:None schema:alternateName College Ghosia College of Engineering Ramanagara, 562159, Karnataka, India
    254 schema:name College Ghosia College of Engineering Ramanagara, 562159, Karnataka, India
    255 rdf:type schema:Organization
    256 grid-institutes:grid.254280.9 schema:alternateName Clarkson University, Box 5708, 13699-5708, Potsdam, NY, USA
    257 schema:name Clarkson University, Box 5708, 13699-5708, Potsdam, NY, USA
    258 rdf:type schema:Organization
    259 grid-institutes:grid.417983.0 schema:alternateName Indian Institute of Tropical Meteorology, Branch, 110 001, New Delhi, India
    260 schema:name Indian Institute of Tropical Meteorology, Branch, 110 001, New Delhi, India
    261 rdf:type schema:Organization
    262 grid-institutes:grid.448827.5 schema:alternateName School of Vocational Studies & Applied Sciences, 201 303, Gautam Buddha University, India
    263 schema:name School of Vocational Studies & Applied Sciences, 201 303, Gautam Buddha University, India
    264 rdf:type schema:Organization
    265 grid-institutes:grid.453080.a schema:alternateName Earth System Science Organization, Ministry of Earth Sciences, 110 003, Delhi, India
    266 schema:name Earth System Science Organization, Ministry of Earth Sciences, 110 003, Delhi, India
    267 rdf:type schema:Organization
    268 grid-institutes:grid.466772.6 schema:alternateName India Meteorological Department, 110 003, New Delhi, India
    269 schema:name India Meteorological Department, 110 003, New Delhi, India
    270 rdf:type schema:Organization
    271 grid-institutes:grid.8547.e schema:alternateName Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, 200 433, Shanghai, China
    272 schema:name Aryabhatta Research Institute of Observational Sciences (ARIES), 263 001, Nainital, Uttarakhand, India
    273 Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, 200 433, Shanghai, China
    274 rdf:type schema:Organization
    275 grid-institutes:grid.8663.b schema:alternateName Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, -11810, Athens, GR, Greece
    276 schema:name Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, -11810, Athens, GR, Greece
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...