A GIS based approach to back trajectory analysis for the source apportionment of aerosol constituents and its first application View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

Dominik van Pinxteren, Erika Brüggemann, Thomas Gnauk, Konrad Müller, Christian Thiel, Hartmut Herrmann

ABSTRACT

A new method has been developed to combine back trajectory statistics with a detailed land cover analysis. It provides numeric proxies for the residence times of sampled air masses above certain land cover classes (marine, natural vegetation, agricultural lands, urban areas, and bare areas), as well as further meteorological parameters (mean trajectory length, solar radiation along trajectory, and local height of the boundary mixing layer). The method has been implemented into a GIS-enabled database system to allow for an efficient processing of large datasets with low computational demands. A principal component analysis was performed on a dataset including the modelled residence times, the modelled meteorological parameters, some measured meteorological parameters (wind speed and temperature), and the concentrations of 10 particle constituents (inorganic ions and organic and elemental carbon) in 5 particle size ranges for 29 winter- and summertime samples at an urban background site in Leipzig, Germany. Six principal components could be extracted which together explained about 80% of the total variance in the dataset. The factors could be attributed to the influence of meteorology to continental background pollution, secondary formation processes in polluted air masses, wood burning, aged sea-salt, local traffic, and long-range transported crustal material. The modelled residence times and the meteorological parameters were generally consistent with the existing knowledge of specific particle sources and thereby facilitated and strengthened the interpretation of the factors. Moreover, they allowed for a clear distinction between continental background pollution and secondary formation processes, which has not been possible in previous source apportionment studies. The results demonstrate that the combined usage of back trajectory, land cover, and meteorological data by the presented method yields valuable additional information on the history of sampled air masses, which can improve the quality of source apportionment of atmospheric aerosol constituents. More... »

PAGES

1

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10874-011-9199-9

DOI

http://dx.doi.org/10.1007/s10874-011-9199-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020327006


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Tropospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.424885.7", 
          "name": [
            "Chemistry Department, Leibniz-Institut f\u00fcr Troposph\u00e4renforschung, Permoserstr. 15, 04318, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Pinxteren", 
        "givenName": "Dominik", 
        "id": "sg:person.01206532522.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206532522.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Tropospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.424885.7", 
          "name": [
            "Chemistry Department, Leibniz-Institut f\u00fcr Troposph\u00e4renforschung, Permoserstr. 15, 04318, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Br\u00fcggemann", 
        "givenName": "Erika", 
        "id": "sg:person.07457144147.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457144147.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Tropospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.424885.7", 
          "name": [
            "Chemistry Department, Leibniz-Institut f\u00fcr Troposph\u00e4renforschung, Permoserstr. 15, 04318, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gnauk", 
        "givenName": "Thomas", 
        "id": "sg:person.016027620356.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027620356.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Tropospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.424885.7", 
          "name": [
            "Chemistry Department, Leibniz-Institut f\u00fcr Troposph\u00e4renforschung, Permoserstr. 15, 04318, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "Konrad", 
        "id": "sg:person.013402206301.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013402206301.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Department of Earth Observation, University of Jena, Institute for Geography, Loebdergraben 32, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thiel", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Tropospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.424885.7", 
          "name": [
            "Chemistry Department, Leibniz-Institut f\u00fcr Troposph\u00e4renforschung, Permoserstr. 15, 04318, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrmann", 
        "givenName": "Hartmut", 
        "id": "sg:person.01262035306.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262035306.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2007.08.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001576606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001620304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003023050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(01)00361-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007414027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2005.11.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008195533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2009.01.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012561323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(01)00201-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012823360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013822137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013822137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1352-2310(95)00314-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020240611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(02)00697-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021665341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(02)00697-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021665341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(98)00431-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022357076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2008.02.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022856995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-3-623-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023595502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-3-623-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023595502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaerosci.2008.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024721590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025223483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(97)00457-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026436694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(01)00122-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027216546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-7-887-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028157391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02786820902953923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028435855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2009.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031694649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2005.07.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032581901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-8502(02)00134-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034375302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-8502(02)00134-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034375302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl028325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035266124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2004.02.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036258707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(85)90256-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037625226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(85)90256-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037625226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2009.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038762486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaerosci.2007.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039855602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2006.04.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039978300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jd007120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040180987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001jd000327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044004335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10874-006-9029-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044777885", 
          "https://doi.org/10.1007/s10874-006-9029-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-8-91-2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046566839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047783839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jd008114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050400626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2007.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051285241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2008.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052937240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004945509829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053238274", 
          "https://doi.org/10.1023/a:1004945509829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-3-867-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053476805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-3-867-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053476805"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "A new method has been developed to combine back trajectory statistics with a detailed land cover analysis. It provides numeric proxies for the residence times of sampled air masses above certain land cover classes (marine, natural vegetation, agricultural lands, urban areas, and bare areas), as well as further meteorological parameters (mean trajectory length, solar radiation along trajectory, and local height of the boundary mixing layer). The method has been implemented into a GIS-enabled database system to allow for an efficient processing of large datasets with low computational demands. A principal component analysis was performed on a dataset including the modelled residence times, the modelled meteorological parameters, some measured meteorological parameters (wind speed and temperature), and the concentrations of 10 particle constituents (inorganic ions and organic and elemental carbon) in 5 particle size ranges for 29 winter- and summertime samples at an urban background site in Leipzig, Germany. Six principal components could be extracted which together explained about 80% of the total variance in the dataset. The factors could be attributed to the influence of meteorology to continental background pollution, secondary formation processes in polluted air masses, wood burning, aged sea-salt, local traffic, and long-range transported crustal material. The modelled residence times and the meteorological parameters were generally consistent with the existing knowledge of specific particle sources and thereby facilitated and strengthened the interpretation of the factors. Moreover, they allowed for a clear distinction between continental background pollution and secondary formation processes, which has not been possible in previous source apportionment studies. The results demonstrate that the combined usage of back trajectory, land cover, and meteorological data by the presented method yields valuable additional information on the history of sampled air masses, which can improve the quality of source apportionment of atmospheric aerosol constituents.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10874-011-9199-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1127423", 
        "issn": [
          "0167-7764", 
          "1573-0662"
        ], 
        "name": "Journal of Atmospheric Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "A GIS based approach to back trajectory analysis for the source apportionment of aerosol constituents and its first application", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60da213b581842b653581cd0c5f88367b19acddff50366b772bdd9168aae1b52"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10874-011-9199-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020327006"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10874-011-9199-9", 
      "https://app.dimensions.ai/details/publication/pub.1020327006"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10874-011-9199-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10874-011-9199-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10874-011-9199-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10874-011-9199-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10874-011-9199-9'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10874-011-9199-9 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author N241637d9de234879a3768ea7d3d42a5c
4 schema:citation sg:pub.10.1007/s10874-006-9029-7
5 sg:pub.10.1023/a:1004945509829
6 https://doi.org/10.1002/cem.796
7 https://doi.org/10.1016/0004-6981(85)90256-2
8 https://doi.org/10.1016/1352-2310(95)00314-2
9 https://doi.org/10.1016/j.atmosenv.2004.02.063
10 https://doi.org/10.1016/j.atmosenv.2005.07.046
11 https://doi.org/10.1016/j.atmosenv.2005.11.046
12 https://doi.org/10.1016/j.atmosenv.2006.08.010
13 https://doi.org/10.1016/j.atmosenv.2006.10.019
14 https://doi.org/10.1016/j.atmosenv.2006.11.015
15 https://doi.org/10.1016/j.atmosenv.2007.08.034
16 https://doi.org/10.1016/j.atmosenv.2009.01.054
17 https://doi.org/10.1016/j.atmosenv.2009.05.018
18 https://doi.org/10.1016/j.atmosenv.2009.08.003
19 https://doi.org/10.1016/j.chemosphere.2006.04.060
20 https://doi.org/10.1016/j.chemosphere.2008.02.061
21 https://doi.org/10.1016/j.envpol.2007.06.012
22 https://doi.org/10.1016/j.jaerosci.2007.08.001
23 https://doi.org/10.1016/j.jaerosci.2008.05.007
24 https://doi.org/10.1016/j.scitotenv.2008.06.007
25 https://doi.org/10.1016/s0021-8502(02)00134-9
26 https://doi.org/10.1016/s0169-7439(01)00201-5
27 https://doi.org/10.1016/s1352-2310(01)00122-4
28 https://doi.org/10.1016/s1352-2310(01)00361-2
29 https://doi.org/10.1016/s1352-2310(02)00697-0
30 https://doi.org/10.1016/s1352-2310(97)00457-3
31 https://doi.org/10.1016/s1352-2310(98)00431-2
32 https://doi.org/10.1029/2001jd000327
33 https://doi.org/10.1029/2005jd006590
34 https://doi.org/10.1029/2006gl028325
35 https://doi.org/10.1029/2006jd007120
36 https://doi.org/10.1029/2006jd008114
37 https://doi.org/10.1080/02786820902953923
38 https://doi.org/10.5194/acp-3-623-2003
39 https://doi.org/10.5194/acp-3-867-2003
40 https://doi.org/10.5194/acp-7-887-2007
41 https://doi.org/10.5194/acp-8-91-2008
42 schema:datePublished 2010-09
43 schema:datePublishedReg 2010-09-01
44 schema:description A new method has been developed to combine back trajectory statistics with a detailed land cover analysis. It provides numeric proxies for the residence times of sampled air masses above certain land cover classes (marine, natural vegetation, agricultural lands, urban areas, and bare areas), as well as further meteorological parameters (mean trajectory length, solar radiation along trajectory, and local height of the boundary mixing layer). The method has been implemented into a GIS-enabled database system to allow for an efficient processing of large datasets with low computational demands. A principal component analysis was performed on a dataset including the modelled residence times, the modelled meteorological parameters, some measured meteorological parameters (wind speed and temperature), and the concentrations of 10 particle constituents (inorganic ions and organic and elemental carbon) in 5 particle size ranges for 29 winter- and summertime samples at an urban background site in Leipzig, Germany. Six principal components could be extracted which together explained about 80% of the total variance in the dataset. The factors could be attributed to the influence of meteorology to continental background pollution, secondary formation processes in polluted air masses, wood burning, aged sea-salt, local traffic, and long-range transported crustal material. The modelled residence times and the meteorological parameters were generally consistent with the existing knowledge of specific particle sources and thereby facilitated and strengthened the interpretation of the factors. Moreover, they allowed for a clear distinction between continental background pollution and secondary formation processes, which has not been possible in previous source apportionment studies. The results demonstrate that the combined usage of back trajectory, land cover, and meteorological data by the presented method yields valuable additional information on the history of sampled air masses, which can improve the quality of source apportionment of atmospheric aerosol constituents.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N00897500d89244e09b7c355a66f93914
49 N578256e823a948319a6f5b9134fb659f
50 sg:journal.1127423
51 schema:name A GIS based approach to back trajectory analysis for the source apportionment of aerosol constituents and its first application
52 schema:pagination 1
53 schema:productId N2f766870cd1746e490a8d903e920f06b
54 N3ef459202faf48ce899e847865210b7f
55 N6026e0c2f8cd4c6186e4f0885765aaeb
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020327006
57 https://doi.org/10.1007/s10874-011-9199-9
58 schema:sdDatePublished 2019-04-10T14:09
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N4b3f24fe4c034ba8b7737e7ae33ed940
61 schema:url http://link.springer.com/10.1007%2Fs10874-011-9199-9
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N00897500d89244e09b7c355a66f93914 schema:volumeNumber 67
66 rdf:type schema:PublicationVolume
67 N185d574f76ad4850919b69121c6a24ed rdf:first sg:person.07457144147.42
68 rdf:rest Ne555d48248b842f580c2b3df6dae1529
69 N241637d9de234879a3768ea7d3d42a5c rdf:first sg:person.01206532522.06
70 rdf:rest N185d574f76ad4850919b69121c6a24ed
71 N2b19fd447008479993055471d456ca8a rdf:first sg:person.013402206301.22
72 rdf:rest N32a016368a174f51854d7aff21b0f0b3
73 N2f766870cd1746e490a8d903e920f06b schema:name doi
74 schema:value 10.1007/s10874-011-9199-9
75 rdf:type schema:PropertyValue
76 N32a016368a174f51854d7aff21b0f0b3 rdf:first Nbb00a011da12433c9add90d57c8c0878
77 rdf:rest Necfc20d249ca4350a3c3b11edb681331
78 N3ef459202faf48ce899e847865210b7f schema:name readcube_id
79 schema:value 60da213b581842b653581cd0c5f88367b19acddff50366b772bdd9168aae1b52
80 rdf:type schema:PropertyValue
81 N4b3f24fe4c034ba8b7737e7ae33ed940 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N578256e823a948319a6f5b9134fb659f schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N6026e0c2f8cd4c6186e4f0885765aaeb schema:name dimensions_id
86 schema:value pub.1020327006
87 rdf:type schema:PropertyValue
88 Nbb00a011da12433c9add90d57c8c0878 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
89 schema:familyName Thiel
90 schema:givenName Christian
91 rdf:type schema:Person
92 Ne555d48248b842f580c2b3df6dae1529 rdf:first sg:person.016027620356.38
93 rdf:rest N2b19fd447008479993055471d456ca8a
94 Necfc20d249ca4350a3c3b11edb681331 rdf:first sg:person.01262035306.49
95 rdf:rest rdf:nil
96 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
97 schema:name Environmental Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
100 schema:name Environmental Science and Management
101 rdf:type schema:DefinedTerm
102 sg:journal.1127423 schema:issn 0167-7764
103 1573-0662
104 schema:name Journal of Atmospheric Chemistry
105 rdf:type schema:Periodical
106 sg:person.01206532522.06 schema:affiliation https://www.grid.ac/institutes/grid.424885.7
107 schema:familyName van Pinxteren
108 schema:givenName Dominik
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206532522.06
110 rdf:type schema:Person
111 sg:person.01262035306.49 schema:affiliation https://www.grid.ac/institutes/grid.424885.7
112 schema:familyName Herrmann
113 schema:givenName Hartmut
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262035306.49
115 rdf:type schema:Person
116 sg:person.013402206301.22 schema:affiliation https://www.grid.ac/institutes/grid.424885.7
117 schema:familyName Müller
118 schema:givenName Konrad
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013402206301.22
120 rdf:type schema:Person
121 sg:person.016027620356.38 schema:affiliation https://www.grid.ac/institutes/grid.424885.7
122 schema:familyName Gnauk
123 schema:givenName Thomas
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027620356.38
125 rdf:type schema:Person
126 sg:person.07457144147.42 schema:affiliation https://www.grid.ac/institutes/grid.424885.7
127 schema:familyName Brüggemann
128 schema:givenName Erika
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457144147.42
130 rdf:type schema:Person
131 sg:pub.10.1007/s10874-006-9029-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044777885
132 https://doi.org/10.1007/s10874-006-9029-7
133 rdf:type schema:CreativeWork
134 sg:pub.10.1023/a:1004945509829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053238274
135 https://doi.org/10.1023/a:1004945509829
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/cem.796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003023050
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0004-6981(85)90256-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625226
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/1352-2310(95)00314-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020240611
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.atmosenv.2004.02.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036258707
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.atmosenv.2005.07.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032581901
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.atmosenv.2005.11.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008195533
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.atmosenv.2006.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001620304
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.atmosenv.2006.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047783839
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.atmosenv.2006.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025223483
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.atmosenv.2007.08.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001576606
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.atmosenv.2009.01.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012561323
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.atmosenv.2009.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031694649
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.atmosenv.2009.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038762486
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.chemosphere.2006.04.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039978300
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.chemosphere.2008.02.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022856995
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.envpol.2007.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051285241
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jaerosci.2007.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039855602
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jaerosci.2008.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024721590
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.scitotenv.2008.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052937240
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0021-8502(02)00134-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034375302
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0169-7439(01)00201-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012823360
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s1352-2310(01)00122-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027216546
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s1352-2310(01)00361-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007414027
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s1352-2310(02)00697-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021665341
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s1352-2310(97)00457-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026436694
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s1352-2310(98)00431-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022357076
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1029/2001jd000327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044004335
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1029/2005jd006590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013822137
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1029/2006gl028325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035266124
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1029/2006jd007120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040180987
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1029/2006jd008114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050400626
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1080/02786820902953923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028435855
200 rdf:type schema:CreativeWork
201 https://doi.org/10.5194/acp-3-623-2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023595502
202 rdf:type schema:CreativeWork
203 https://doi.org/10.5194/acp-3-867-2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053476805
204 rdf:type schema:CreativeWork
205 https://doi.org/10.5194/acp-7-887-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028157391
206 rdf:type schema:CreativeWork
207 https://doi.org/10.5194/acp-8-91-2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046566839
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.424885.7 schema:alternateName Leibniz Institute for Tropospheric Research
210 schema:name Chemistry Department, Leibniz-Institut für Troposphärenforschung, Permoserstr. 15, 04318, Leipzig, Germany
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.9613.d schema:alternateName Friedrich Schiller University Jena
213 schema:name Department of Earth Observation, University of Jena, Institute for Geography, Loebdergraben 32, 07743, Jena, Germany
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...