Development of primer sets for multiplex and qPCR assays targeting Skeletonema species and their application to field samples View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-30

AUTHORS

Natsumi Enjoji, Toshiya Katano, Yuki Yoshinaka, Fuka Furuoka, Yutaro Ando, Machiko Yamada, Tomomi Hamasaki, Emika Miyamura, Mayuko Otsubo, Katsuhide Yokoyama

ABSTRACT

Skeletonema is a dominant diatom, especially in coastal waters. However, species identification and quantification in the natural environment has not yet been established, as species identification can be nearly impossible with light microscopy. In the present study, we developed primer sets for multiplex and real-time PCR to identify and enumerate the 10 Skeletonema species, and applied this technique to samples obtained from the tidal zone of the Chikugo River and its adjacent waters of the Ariake Sea from spring to summer. In total, eight Skeletonema species were detected during the investigation. Among the eight, the S. marinoi–dohrnii complex was detected at all three stations. Skeletonema potamos was the second most frequently detected, mainly in the Chikugo River. The overall number of detected species was low at the upper tidal zone of the Chikugo River, where salinity was < 2. These results reveal the diverse Skeletonema community in the brackish environment, and the primer sets designed in the present study are useful for analyzing species composition of Skeletonema. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10872-018-00504-3

DOI

http://dx.doi.org/10.1007/s10872-018-00504-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111779820


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fukuoka Women's University", 
          "id": "https://www.grid.ac/institutes/grid.411574.2", 
          "name": [
            "Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan", 
            "Fukuoka Women\u2019s University, 1-1-1, Kasumigaoka, Higashi-ku, 813-8529, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enjoji", 
        "givenName": "Natsumi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katano", 
        "givenName": "Toshiya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshinaka", 
        "givenName": "Yuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furuoka", 
        "givenName": "Fuka", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ando", 
        "givenName": "Yutaro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fukuoka Women's University", 
          "id": "https://www.grid.ac/institutes/grid.411574.2", 
          "name": [
            "Fukuoka Women\u2019s University, 1-1-1, Kasumigaoka, Higashi-ku, 813-8529, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Machiko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fukuoka Women's University", 
          "id": "https://www.grid.ac/institutes/grid.411574.2", 
          "name": [
            "Fukuoka Women\u2019s University, 1-1-1, Kasumigaoka, Higashi-ku, 813-8529, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamasaki", 
        "givenName": "Tomomi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fukuoka Women's University", 
          "id": "https://www.grid.ac/institutes/grid.411574.2", 
          "name": [
            "Fukuoka Women\u2019s University, 1-1-1, Kasumigaoka, Higashi-ku, 813-8529, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyamura", 
        "givenName": "Emika", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fukuoka Women's University", 
          "id": "https://www.grid.ac/institutes/grid.411574.2", 
          "name": [
            "Fukuoka Women\u2019s University, 1-1-1, Kasumigaoka, Higashi-ku, 813-8529, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otsubo", 
        "givenName": "Mayuko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University", 
          "id": "https://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, 192-0397, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokoyama", 
        "givenName": "Katsuhide", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00253-009-2249-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000599498", 
          "https://doi.org/10.1007/s00253-009-2249-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-009-2249-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000599498", 
          "https://doi.org/10.1007/s00253-009-2249-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-009-2249-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000599498", 
          "https://doi.org/10.1007/s00253-009-2249-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.46.7.2155-2161.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003005551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/plankt/fbq150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003053560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09670262.2011.565128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003273874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.1980.tb03061.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006640650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hal.2006.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008518047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.protis.2014.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023546983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.2006.00305.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023649327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/d2070973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025048538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10872-010-0062-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031921376", 
          "https://doi.org/10.1007/s10872-010-0062-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.protis.2007.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034881638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.2005.04066.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035948051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.2011.00976.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038039363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10811-012-9816-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038064621", 
          "https://doi.org/10.1007/s10811-012-9816-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/plankt/fbq127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038413102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.02389-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039553854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.66.11.4641-4648.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047818468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3800/pbr.9.168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050329961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2331/suisan.16-00040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050542310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.2005.04067.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053282048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12562-013-0671-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053691618", 
          "https://doi.org/10.1007/s12562-013-0671-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/ame040121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071158048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps11843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071173011"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-30", 
    "datePublishedReg": "2019-01-30", 
    "description": "Skeletonema is a dominant diatom, especially in coastal waters. However, species identification and quantification in the natural environment has not yet been established, as species identification can be nearly impossible with light microscopy. In the present study, we developed primer sets for multiplex and real-time PCR to identify and enumerate the 10 Skeletonema species, and applied this technique to samples obtained from the tidal zone of the Chikugo River and its adjacent waters of the Ariake Sea from spring to summer. In total, eight Skeletonema species were detected during the investigation. Among the eight, the S. marinoi\u2013dohrnii complex was detected at all three stations. Skeletonema potamos was the second most frequently detected, mainly in the Chikugo River. The overall number of detected species was low at the upper tidal zone of the Chikugo River, where salinity was < 2. These results reveal the diverse Skeletonema community in the brackish environment, and the primer sets designed in the present study are useful for analyzing species composition of Skeletonema.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10872-018-00504-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6118444", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5907762", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1313776", 
        "issn": [
          "0916-8370", 
          "1573-868X"
        ], 
        "name": "Journal of Oceanography", 
        "type": "Periodical"
      }
    ], 
    "name": "Development of primer sets for multiplex and qPCR assays targeting Skeletonema species and their application to field samples", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e6918db5e292594e90c34cf184290ed36996c71ee1e2fd94783b5c1478fc65f3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10872-018-00504-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111779820"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10872-018-00504-3", 
      "https://app.dimensions.ai/details/publication/pub.1111779820"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68439_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10872-018-00504-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10872-018-00504-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10872-018-00504-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10872-018-00504-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10872-018-00504-3'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      47 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10872-018-00504-3 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author Ne0333cd0891b43bd8ce190ea77d3bf73
4 schema:citation sg:pub.10.1007/s00253-009-2249-4
5 sg:pub.10.1007/s10811-012-9816-2
6 sg:pub.10.1007/s10872-010-0062-4
7 sg:pub.10.1007/s12562-013-0671-0
8 https://doi.org/10.1016/j.hal.2006.12.004
9 https://doi.org/10.1016/j.protis.2007.09.004
10 https://doi.org/10.1016/j.protis.2014.08.001
11 https://doi.org/10.1080/09670262.2011.565128
12 https://doi.org/10.1093/plankt/fbq127
13 https://doi.org/10.1093/plankt/fbq150
14 https://doi.org/10.1111/j.1529-8817.1980.tb03061.x
15 https://doi.org/10.1111/j.1529-8817.2005.04066.x
16 https://doi.org/10.1111/j.1529-8817.2005.04067.x
17 https://doi.org/10.1111/j.1529-8817.2006.00305.x
18 https://doi.org/10.1111/j.1529-8817.2011.00976.x
19 https://doi.org/10.1128/aac.46.7.2155-2161.2002
20 https://doi.org/10.1128/aem.02389-06
21 https://doi.org/10.1128/aem.66.11.4641-4648.2000
22 https://doi.org/10.2331/suisan.16-00040
23 https://doi.org/10.3354/ame040121
24 https://doi.org/10.3354/meps11843
25 https://doi.org/10.3390/d2070973
26 https://doi.org/10.3800/pbr.9.168
27 schema:datePublished 2019-01-30
28 schema:datePublishedReg 2019-01-30
29 schema:description Skeletonema is a dominant diatom, especially in coastal waters. However, species identification and quantification in the natural environment has not yet been established, as species identification can be nearly impossible with light microscopy. In the present study, we developed primer sets for multiplex and real-time PCR to identify and enumerate the 10 Skeletonema species, and applied this technique to samples obtained from the tidal zone of the Chikugo River and its adjacent waters of the Ariake Sea from spring to summer. In total, eight Skeletonema species were detected during the investigation. Among the eight, the S. marinoi–dohrnii complex was detected at all three stations. Skeletonema potamos was the second most frequently detected, mainly in the Chikugo River. The overall number of detected species was low at the upper tidal zone of the Chikugo River, where salinity was < 2. These results reveal the diverse Skeletonema community in the brackish environment, and the primer sets designed in the present study are useful for analyzing species composition of Skeletonema.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf sg:journal.1313776
34 schema:name Development of primer sets for multiplex and qPCR assays targeting Skeletonema species and their application to field samples
35 schema:pagination 1-16
36 schema:productId N8a061c78ba434fd6ba32992e81b5d012
37 N969c1507ed2f465ca2202272553253f8
38 Nb899b4c9ee38487abdef256e53a98561
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111779820
40 https://doi.org/10.1007/s10872-018-00504-3
41 schema:sdDatePublished 2019-04-11T08:58
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nb195eaf1b7cd4fb0a674086666e863e2
44 schema:url https://link.springer.com/10.1007%2Fs10872-018-00504-3
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0fb2a7442e494fe9b482c751dacc9dc3 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
49 schema:familyName Katano
50 schema:givenName Toshiya
51 rdf:type schema:Person
52 N16adc14eabd94df28ff4d2ab1f4ec541 schema:affiliation https://www.grid.ac/institutes/grid.411574.2
53 schema:familyName Yamada
54 schema:givenName Machiko
55 rdf:type schema:Person
56 N3a909c2c428148598fc565b6617c68da rdf:first Nda821c85cdf24173bade4a23de983d60
57 rdf:rest N7242d22af3ca4180b0954f3e7ab9c5ee
58 N40b74d110eda433eb5252567822ab5a5 schema:affiliation https://www.grid.ac/institutes/grid.411574.2
59 schema:familyName Enjoji
60 schema:givenName Natsumi
61 rdf:type schema:Person
62 N4a5edabaf278455da02bf6059c636dfd schema:affiliation https://www.grid.ac/institutes/grid.412785.d
63 schema:familyName Furuoka
64 schema:givenName Fuka
65 rdf:type schema:Person
66 N58be7768692f48ec936338faf785ce3d schema:affiliation https://www.grid.ac/institutes/grid.265074.2
67 schema:familyName Yokoyama
68 schema:givenName Katsuhide
69 rdf:type schema:Person
70 N7242d22af3ca4180b0954f3e7ab9c5ee rdf:first Nf60dc811e9b040f2aa00b86e6d90a58f
71 rdf:rest Nfe37a81f7a6e4c5085f1d3d14fdb6ba2
72 N77463ad048ab4b438e037ed9cd30f96a rdf:first Neffc90ef7c954f58bc120f98e3b32db1
73 rdf:rest N3a909c2c428148598fc565b6617c68da
74 N86f1236d3f2046bb9515a5349931e7c5 rdf:first Nb513222746fd4be1838003af1b06d341
75 rdf:rest Na3c3142620db47aba32e6d03b3a959e2
76 N8a061c78ba434fd6ba32992e81b5d012 schema:name readcube_id
77 schema:value e6918db5e292594e90c34cf184290ed36996c71ee1e2fd94783b5c1478fc65f3
78 rdf:type schema:PropertyValue
79 N969c1507ed2f465ca2202272553253f8 schema:name dimensions_id
80 schema:value pub.1111779820
81 rdf:type schema:PropertyValue
82 Na3c3142620db47aba32e6d03b3a959e2 rdf:first N16adc14eabd94df28ff4d2ab1f4ec541
83 rdf:rest N77463ad048ab4b438e037ed9cd30f96a
84 Na3da94e7a2d741e1a80bba9c786c0969 rdf:first N4a5edabaf278455da02bf6059c636dfd
85 rdf:rest N86f1236d3f2046bb9515a5349931e7c5
86 Nb195eaf1b7cd4fb0a674086666e863e2 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nb513222746fd4be1838003af1b06d341 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
89 schema:familyName Ando
90 schema:givenName Yutaro
91 rdf:type schema:Person
92 Nb899b4c9ee38487abdef256e53a98561 schema:name doi
93 schema:value 10.1007/s10872-018-00504-3
94 rdf:type schema:PropertyValue
95 Nbe9d51df12ea4da79b99d5090a1d07da schema:affiliation https://www.grid.ac/institutes/grid.412785.d
96 schema:familyName Yoshinaka
97 schema:givenName Yuki
98 rdf:type schema:Person
99 Nda821c85cdf24173bade4a23de983d60 schema:affiliation https://www.grid.ac/institutes/grid.411574.2
100 schema:familyName Miyamura
101 schema:givenName Emika
102 rdf:type schema:Person
103 Ne0333cd0891b43bd8ce190ea77d3bf73 rdf:first N40b74d110eda433eb5252567822ab5a5
104 rdf:rest Nf7e8df7246694ff5b9a1fdfe806540e3
105 Neef88c4ce726428991307126f44eccb1 rdf:first Nbe9d51df12ea4da79b99d5090a1d07da
106 rdf:rest Na3da94e7a2d741e1a80bba9c786c0969
107 Neffc90ef7c954f58bc120f98e3b32db1 schema:affiliation https://www.grid.ac/institutes/grid.411574.2
108 schema:familyName Hamasaki
109 schema:givenName Tomomi
110 rdf:type schema:Person
111 Nf60dc811e9b040f2aa00b86e6d90a58f schema:affiliation https://www.grid.ac/institutes/grid.411574.2
112 schema:familyName Otsubo
113 schema:givenName Mayuko
114 rdf:type schema:Person
115 Nf7e8df7246694ff5b9a1fdfe806540e3 rdf:first N0fb2a7442e494fe9b482c751dacc9dc3
116 rdf:rest Neef88c4ce726428991307126f44eccb1
117 Nfe37a81f7a6e4c5085f1d3d14fdb6ba2 rdf:first N58be7768692f48ec936338faf785ce3d
118 rdf:rest rdf:nil
119 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
120 schema:name Environmental Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
123 schema:name Environmental Science and Management
124 rdf:type schema:DefinedTerm
125 sg:grant.5907762 http://pending.schema.org/fundedItem sg:pub.10.1007/s10872-018-00504-3
126 rdf:type schema:MonetaryGrant
127 sg:grant.6118444 http://pending.schema.org/fundedItem sg:pub.10.1007/s10872-018-00504-3
128 rdf:type schema:MonetaryGrant
129 sg:journal.1313776 schema:issn 0916-8370
130 1573-868X
131 schema:name Journal of Oceanography
132 rdf:type schema:Periodical
133 sg:pub.10.1007/s00253-009-2249-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000599498
134 https://doi.org/10.1007/s00253-009-2249-4
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10811-012-9816-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038064621
137 https://doi.org/10.1007/s10811-012-9816-2
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10872-010-0062-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031921376
140 https://doi.org/10.1007/s10872-010-0062-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s12562-013-0671-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053691618
143 https://doi.org/10.1007/s12562-013-0671-0
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.hal.2006.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008518047
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.protis.2007.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034881638
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.protis.2014.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023546983
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/09670262.2011.565128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003273874
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/plankt/fbq127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038413102
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/plankt/fbq150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003053560
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1111/j.1529-8817.1980.tb03061.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006640650
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1111/j.1529-8817.2005.04066.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035948051
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1111/j.1529-8817.2005.04067.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053282048
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1111/j.1529-8817.2006.00305.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023649327
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/j.1529-8817.2011.00976.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038039363
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1128/aac.46.7.2155-2161.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003005551
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1128/aem.02389-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039553854
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1128/aem.66.11.4641-4648.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047818468
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2331/suisan.16-00040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050542310
174 rdf:type schema:CreativeWork
175 https://doi.org/10.3354/ame040121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071158048
176 rdf:type schema:CreativeWork
177 https://doi.org/10.3354/meps11843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071173011
178 rdf:type schema:CreativeWork
179 https://doi.org/10.3390/d2070973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025048538
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3800/pbr.9.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050329961
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.265074.2 schema:alternateName Tokyo Metropolitan University
184 schema:name Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, 192-0397, Tokyo, Japan
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.411574.2 schema:alternateName Fukuoka Women's University
187 schema:name Fukuoka Women’s University, 1-1-1, Kasumigaoka, Higashi-ku, 813-8529, Fukuoka, Japan
188 Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.412785.d schema:alternateName Tokyo University of Marine Science and Technology
191 schema:name Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...