The Effects of Empirical Keying of Personality Measures on Faking and Criterion-Related Validity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-07

AUTHORS

Jeffrey M. Cucina, Nicholas L. Vasilopoulos, Chihwei Su, Henry H. Busciglio, Irina Cozma, Arwen H. DeCostanza, Nicholas R. Martin, Megan N. Shaw

ABSTRACT

We investigated the effects of empirical keying on scoring personality measures. To our knowledge, this is the first published study to investigate the use of empirical keying for personality in a selection context. We hypothesized that empirical keying maximizes use of the information provided in responses to personality items. We also hypothesized that it reduces faking since the relationship between response options and performance is not obvious to respondents. Four studies were used to test the hypotheses. In Study 1, the criterion-related validity of empirically keyed personality measures was investigated using applicant data from a law enforcement officer predictive validation study. A combination of training and job performance measures was used as criteria. In Study 2, two empirical keys were created for long and short measures of the five factors. The criterion-related validities of the empirical keys were investigated using Freshman GPA (FGPA) as a criterion. In Study 3, one set of the empirical keys from Study 2 was applied to experimental data to examine the effects of empirical keying on applicant faking and on the relationship of personality scores and cognitive ability. In Study 4, we examined the generalizability of empirical keying across different organizations. Across the studies, option- and item-level empirical keying increased criterion-related validities for academic, training, and job performance. Empirical keying also reduced the effects of faking. Thus, both hypotheses were supported. We recommend that psychologists using personality measures to predict performance should consider the use of empirical keying as it enhanced validity and reduced faking. More... »

PAGES

1-20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10869-018-9544-y

DOI

http://dx.doi.org/10.1007/s10869-018-9544-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103844158


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United States Customs and Border Protection", 
          "id": "https://www.grid.ac/institutes/grid.484280.2", 
          "name": [
            "George Washington University, Washington, DC, USA", 
            "U.S. Customs and Border Protection, 1400 L ST NW, 7S39, 20229-1145, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cucina", 
        "givenName": "Jeffrey M.", 
        "id": "sg:person.013166335751.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166335751.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Security Agency", 
          "id": "https://www.grid.ac/institutes/grid.482831.4", 
          "name": [
            "National Security Agency, Fort Meade, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasilopoulos", 
        "givenName": "Nicholas L.", 
        "id": "sg:person.010762555044.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010762555044.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Customs and Border Protection", 
          "id": "https://www.grid.ac/institutes/grid.484280.2", 
          "name": [
            "U.S. Customs and Border Protection, 1400 L ST NW, 7S39, 20229-1145, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Chihwei", 
        "id": "sg:person.012774613011.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774613011.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Customs and Border Protection", 
          "id": "https://www.grid.ac/institutes/grid.484280.2", 
          "name": [
            "U.S. Customs and Border Protection, 1400 L ST NW, 7S39, 20229-1145, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busciglio", 
        "givenName": "Henry H.", 
        "id": "sg:person.015404625177.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015404625177.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Development Dimensions International, Bridgeville, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cozma", 
        "givenName": "Irina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Army Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.420282.e", 
          "name": [
            "U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeCostanza", 
        "givenName": "Arwen H.", 
        "id": "sg:person.012061336215.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061336215.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Aon, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martin", 
        "givenName": "Nicholas R.", 
        "id": "sg:person.016214203306.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214203306.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amazon (United States)", 
          "id": "https://www.grid.ac/institutes/grid.467171.2", 
          "name": [
            "Amazon, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Megan N.", 
        "id": "sg:person.015467450204.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015467450204.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/ijsa.12117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000636543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-2389.2008.00420.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001966683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-6494.2004.00309.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002551229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intell.2015.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002894521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0021016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003180423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.2009.01136.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003929305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.2009.01136.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003929305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.83.4.634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004009534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.112.1.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004794430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1348/096317906x102114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005654120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/mil0000044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005778231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327043hup1803_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006858440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327043hup1803_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006858440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.2012.01244.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007921928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.1991.tb00698.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008002313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.1991.tb00698.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008002313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ijsa.12108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010184314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0963721410389459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012003107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0963721410389459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012003107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0026655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012628094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0141468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013894155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.75.2.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017557006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327043hup1903_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019274159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327752jpa6302_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019447607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327752jpa6302_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019447607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.1991.tb00688.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021105852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.124.2.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024375824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-2389.2007.00383.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025016515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.paid.2011.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025230509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.2012.01250.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025533334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.90.2.306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025595561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.76.6.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029649296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0031748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030005206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.paid.2014.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031754986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.110.2.305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033829148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.67.4.411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034657576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1468-2389.00087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038960736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1468-2389.00087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038960736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0034688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041072533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-2389.2008.00419.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041702613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.111.1.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043192367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/10127-024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044641749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/pspp0000100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045642582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.2007.00089.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050072194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpsyg.2016.00933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050179181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpsyg.2013.00968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051899473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ps.45.020194.002041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052246446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.paid.2016.03.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052600165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327043hup1501&02_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064218249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/apl0000213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084126622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ijsa.12171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085211665"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-07", 
    "datePublishedReg": "2018-05-07", 
    "description": "We investigated the effects of empirical keying on scoring personality measures. To our knowledge, this is the first published study to investigate the use of empirical keying for personality in a selection context. We hypothesized that empirical keying maximizes use of the information provided in responses to personality items. We also hypothesized that it reduces faking since the relationship between response options and performance is not obvious to respondents. Four studies were used to test the hypotheses. In Study 1, the criterion-related validity of empirically keyed personality measures was investigated using applicant data from a law enforcement officer predictive validation study. A combination of training and job performance measures was used as criteria. In Study 2, two empirical keys were created for long and short measures of the five factors. The criterion-related validities of the empirical keys were investigated using Freshman GPA (FGPA) as a criterion. In Study 3, one set of the empirical keys from Study 2 was applied to experimental data to examine the effects of empirical keying on applicant faking and on the relationship of personality scores and cognitive ability. In Study 4, we examined the generalizability of empirical keying across different organizations. Across the studies, option- and item-level empirical keying increased criterion-related validities for academic, training, and job performance. Empirical keying also reduced the effects of faking. Thus, both hypotheses were supported. We recommend that psychologists using personality measures to predict performance should consider the use of empirical keying as it enhanced validity and reduced faking.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10869-018-9544-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1097495", 
        "issn": [
          "0889-3268", 
          "1573-353X"
        ], 
        "name": "Journal of Business and Psychology", 
        "type": "Periodical"
      }
    ], 
    "name": "The Effects of Empirical Keying of Personality Measures on Faking and Criterion-Related Validity", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f629025b9b61920effb9a2dfba3e1ab2d5de3bebb8439b495932bc2716ae91d3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10869-018-9544-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103844158"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10869-018-9544-y", 
      "https://app.dimensions.ai/details/publication/pub.1103844158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54302_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10869-018-9544-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10869-018-9544-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10869-018-9544-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10869-018-9544-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10869-018-9544-y'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      69 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10869-018-9544-y schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nf5be8467a1e04a89a981ffa24d4b935f
4 schema:citation https://doi.org/10.1016/j.intell.2015.01.007
5 https://doi.org/10.1016/j.paid.2011.10.017
6 https://doi.org/10.1016/j.paid.2014.04.029
7 https://doi.org/10.1016/j.paid.2016.03.075
8 https://doi.org/10.1037/0021-9010.67.4.411
9 https://doi.org/10.1037/0021-9010.75.2.175
10 https://doi.org/10.1037/0021-9010.76.6.889
11 https://doi.org/10.1037/0021-9010.83.4.634
12 https://doi.org/10.1037/0021-9010.90.2.306
13 https://doi.org/10.1037/0033-2909.110.2.305
14 https://doi.org/10.1037/0033-2909.111.1.172
15 https://doi.org/10.1037/0033-2909.112.1.155
16 https://doi.org/10.1037/0033-2909.124.2.262
17 https://doi.org/10.1037/10127-024
18 https://doi.org/10.1037/a0021016
19 https://doi.org/10.1037/a0026655
20 https://doi.org/10.1037/a0031748
21 https://doi.org/10.1037/a0034688
22 https://doi.org/10.1037/apl0000213
23 https://doi.org/10.1037/mil0000044
24 https://doi.org/10.1037/pspp0000100
25 https://doi.org/10.1111/1468-2389.00087
26 https://doi.org/10.1111/ijsa.12108
27 https://doi.org/10.1111/ijsa.12117
28 https://doi.org/10.1111/ijsa.12171
29 https://doi.org/10.1111/j.1467-6494.2004.00309.x
30 https://doi.org/10.1111/j.1468-2389.2007.00383.x
31 https://doi.org/10.1111/j.1468-2389.2008.00419.x
32 https://doi.org/10.1111/j.1468-2389.2008.00420.x
33 https://doi.org/10.1111/j.1744-6570.1991.tb00688.x
34 https://doi.org/10.1111/j.1744-6570.1991.tb00698.x
35 https://doi.org/10.1111/j.1744-6570.2007.00089.x
36 https://doi.org/10.1111/j.1744-6570.2009.01136.x
37 https://doi.org/10.1111/j.1744-6570.2012.01244.x
38 https://doi.org/10.1111/j.1744-6570.2012.01250.x
39 https://doi.org/10.1146/annurev.ps.45.020194.002041
40 https://doi.org/10.1177/0963721410389459
41 https://doi.org/10.1207/s15327043hup1501&02_12
42 https://doi.org/10.1207/s15327043hup1803_4
43 https://doi.org/10.1207/s15327043hup1903_1
44 https://doi.org/10.1207/s15327752jpa6302_14
45 https://doi.org/10.1348/096317906x102114
46 https://doi.org/10.1371/journal.pone.0141468
47 https://doi.org/10.3389/fpsyg.2013.00968
48 https://doi.org/10.3389/fpsyg.2016.00933
49 schema:datePublished 2018-05-07
50 schema:datePublishedReg 2018-05-07
51 schema:description We investigated the effects of empirical keying on scoring personality measures. To our knowledge, this is the first published study to investigate the use of empirical keying for personality in a selection context. We hypothesized that empirical keying maximizes use of the information provided in responses to personality items. We also hypothesized that it reduces faking since the relationship between response options and performance is not obvious to respondents. Four studies were used to test the hypotheses. In Study 1, the criterion-related validity of empirically keyed personality measures was investigated using applicant data from a law enforcement officer predictive validation study. A combination of training and job performance measures was used as criteria. In Study 2, two empirical keys were created for long and short measures of the five factors. The criterion-related validities of the empirical keys were investigated using Freshman GPA (FGPA) as a criterion. In Study 3, one set of the empirical keys from Study 2 was applied to experimental data to examine the effects of empirical keying on applicant faking and on the relationship of personality scores and cognitive ability. In Study 4, we examined the generalizability of empirical keying across different organizations. Across the studies, option- and item-level empirical keying increased criterion-related validities for academic, training, and job performance. Empirical keying also reduced the effects of faking. Thus, both hypotheses were supported. We recommend that psychologists using personality measures to predict performance should consider the use of empirical keying as it enhanced validity and reduced faking.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf sg:journal.1097495
56 schema:name The Effects of Empirical Keying of Personality Measures on Faking and Criterion-Related Validity
57 schema:pagination 1-20
58 schema:productId N39777b27507f4d2e869a55749e179cd2
59 N9caf298f64fd4cc7b986ff6fe33ce78a
60 Nc0514e1ef7c94fd0926667573697befb
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103844158
62 https://doi.org/10.1007/s10869-018-9544-y
63 schema:sdDatePublished 2019-04-11T10:16
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N73885503eba44311b8cc718b89644739
66 schema:url https://link.springer.com/10.1007%2Fs10869-018-9544-y
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N03e1362e822a437e9535a6a5fecff942 rdf:first sg:person.012774613011.69
71 rdf:rest N8c0afdf3690a492f8cb6ac9e03a9f048
72 N12d55f0eb59047e9836925401cb2cce8 schema:name Aon, Austin, TX, USA
73 rdf:type schema:Organization
74 N1c3240595afc48d99d8e84d89a95bbd0 schema:name Development Dimensions International, Bridgeville, PA, USA
75 rdf:type schema:Organization
76 N218fee2b8da14f60b78b4a3c403fe096 rdf:first sg:person.016214203306.20
77 rdf:rest N39c77565717c4f5588eaefae5f5705ed
78 N39777b27507f4d2e869a55749e179cd2 schema:name doi
79 schema:value 10.1007/s10869-018-9544-y
80 rdf:type schema:PropertyValue
81 N39c77565717c4f5588eaefae5f5705ed rdf:first sg:person.015467450204.36
82 rdf:rest rdf:nil
83 N5194c4618bdd4f2dafc8f32a553eb004 rdf:first Nd25a395f2bc14634811589eecc82c3ec
84 rdf:rest Nb5efbec9f3e14aa4add9fd83de050cdc
85 N73885503eba44311b8cc718b89644739 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N7e08c56f5989431e99d57e36db28f643 rdf:first sg:person.010762555044.33
88 rdf:rest N03e1362e822a437e9535a6a5fecff942
89 N8c0afdf3690a492f8cb6ac9e03a9f048 rdf:first sg:person.015404625177.65
90 rdf:rest N5194c4618bdd4f2dafc8f32a553eb004
91 N9caf298f64fd4cc7b986ff6fe33ce78a schema:name dimensions_id
92 schema:value pub.1103844158
93 rdf:type schema:PropertyValue
94 Nb5efbec9f3e14aa4add9fd83de050cdc rdf:first sg:person.012061336215.17
95 rdf:rest N218fee2b8da14f60b78b4a3c403fe096
96 Nc0514e1ef7c94fd0926667573697befb schema:name readcube_id
97 schema:value f629025b9b61920effb9a2dfba3e1ab2d5de3bebb8439b495932bc2716ae91d3
98 rdf:type schema:PropertyValue
99 Nd25a395f2bc14634811589eecc82c3ec schema:affiliation N1c3240595afc48d99d8e84d89a95bbd0
100 schema:familyName Cozma
101 schema:givenName Irina
102 rdf:type schema:Person
103 Nf5be8467a1e04a89a981ffa24d4b935f rdf:first sg:person.013166335751.64
104 rdf:rest N7e08c56f5989431e99d57e36db28f643
105 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
106 schema:name Psychology and Cognitive Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
109 schema:name Psychology
110 rdf:type schema:DefinedTerm
111 sg:journal.1097495 schema:issn 0889-3268
112 1573-353X
113 schema:name Journal of Business and Psychology
114 rdf:type schema:Periodical
115 sg:person.010762555044.33 schema:affiliation https://www.grid.ac/institutes/grid.482831.4
116 schema:familyName Vasilopoulos
117 schema:givenName Nicholas L.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010762555044.33
119 rdf:type schema:Person
120 sg:person.012061336215.17 schema:affiliation https://www.grid.ac/institutes/grid.420282.e
121 schema:familyName DeCostanza
122 schema:givenName Arwen H.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061336215.17
124 rdf:type schema:Person
125 sg:person.012774613011.69 schema:affiliation https://www.grid.ac/institutes/grid.484280.2
126 schema:familyName Su
127 schema:givenName Chihwei
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774613011.69
129 rdf:type schema:Person
130 sg:person.013166335751.64 schema:affiliation https://www.grid.ac/institutes/grid.484280.2
131 schema:familyName Cucina
132 schema:givenName Jeffrey M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166335751.64
134 rdf:type schema:Person
135 sg:person.015404625177.65 schema:affiliation https://www.grid.ac/institutes/grid.484280.2
136 schema:familyName Busciglio
137 schema:givenName Henry H.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015404625177.65
139 rdf:type schema:Person
140 sg:person.015467450204.36 schema:affiliation https://www.grid.ac/institutes/grid.467171.2
141 schema:familyName Shaw
142 schema:givenName Megan N.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015467450204.36
144 rdf:type schema:Person
145 sg:person.016214203306.20 schema:affiliation N12d55f0eb59047e9836925401cb2cce8
146 schema:familyName Martin
147 schema:givenName Nicholas R.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214203306.20
149 rdf:type schema:Person
150 https://doi.org/10.1016/j.intell.2015.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002894521
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.paid.2011.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025230509
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.paid.2014.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031754986
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.paid.2016.03.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052600165
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1037/0021-9010.67.4.411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034657576
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1037/0021-9010.75.2.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017557006
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1037/0021-9010.76.6.889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029649296
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1037/0021-9010.83.4.634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004009534
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1037/0021-9010.90.2.306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025595561
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1037/0033-2909.110.2.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033829148
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1037/0033-2909.111.1.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043192367
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1037/0033-2909.112.1.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004794430
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1037/0033-2909.124.2.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024375824
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1037/10127-024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044641749
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1037/a0021016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003180423
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1037/a0026655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012628094
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1037/a0031748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030005206
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1037/a0034688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041072533
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1037/apl0000213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084126622
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1037/mil0000044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005778231
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1037/pspp0000100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045642582
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/1468-2389.00087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038960736
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1111/ijsa.12108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010184314
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/ijsa.12117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000636543
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/ijsa.12171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085211665
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/j.1467-6494.2004.00309.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002551229
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1468-2389.2007.00383.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025016515
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1468-2389.2008.00419.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041702613
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.1468-2389.2008.00420.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001966683
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/j.1744-6570.1991.tb00688.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021105852
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.1744-6570.1991.tb00698.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008002313
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/j.1744-6570.2007.00089.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050072194
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/j.1744-6570.2009.01136.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003929305
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1111/j.1744-6570.2012.01244.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007921928
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/j.1744-6570.2012.01250.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025533334
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1146/annurev.ps.45.020194.002041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052246446
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1177/0963721410389459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012003107
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1207/s15327043hup1501&02_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064218249
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1207/s15327043hup1803_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006858440
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1207/s15327043hup1903_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019274159
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1207/s15327752jpa6302_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019447607
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1348/096317906x102114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005654120
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1371/journal.pone.0141468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013894155
235 rdf:type schema:CreativeWork
236 https://doi.org/10.3389/fpsyg.2013.00968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051899473
237 rdf:type schema:CreativeWork
238 https://doi.org/10.3389/fpsyg.2016.00933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050179181
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.420282.e schema:alternateName United States Army Research Laboratory
241 schema:name U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.467171.2 schema:alternateName Amazon (United States)
244 schema:name Amazon, Seattle, WA, USA
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.482831.4 schema:alternateName National Security Agency
247 schema:name National Security Agency, Fort Meade, MD, USA
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.484280.2 schema:alternateName United States Customs and Border Protection
250 schema:name George Washington University, Washington, DC, USA
251 U.S. Customs and Border Protection, 1400 L ST NW, 7S39, 20229-1145, Washington, DC, USA
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...