Ontology type: schema:ScholarlyArticle
2018-12
AUTHORSAlexander Klein, Suresh K. Vasa, Rasmus Linser
ABSTRACTGiven that solid-state NMR is being used for protein samples of increasing molecular weight and complexity, higher-dimensionality methods are likely to be more and more indispensable for unambiguous chemical shift assignments in the near future. In addition, solid-state NMR spectral properties are increasingly comparable with solution NMR, allowing adaptation of more sophisticated solution NMR strategies for the solid state in addition to the conventional methodology. Assessing first principles, here we demonstrate the application of automated projection spectroscopy for a micro-crystalline protein in the solid state. More... »
PAGES1-8
http://scigraph.springernature.com/pub.10.1007/s10858-018-0215-0
DOIhttp://dx.doi.org/10.1007/s10858-018-0215-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1109899583
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30430291
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ludwig Maximilian University of Munich",
"id": "https://www.grid.ac/institutes/grid.5252.0",
"name": [
"Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany",
"Center for Integrated Protein Science (CiPSM), Munich, Germany"
],
"type": "Organization"
},
"familyName": "Klein",
"givenName": "Alexander",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ludwig Maximilian University of Munich",
"id": "https://www.grid.ac/institutes/grid.5252.0",
"name": [
"Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany",
"Center for Integrated Protein Science (CiPSM), Munich, Germany"
],
"type": "Organization"
},
"familyName": "Vasa",
"givenName": "Suresh K.",
"id": "sg:person.01227642606.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227642606.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "TU Dortmund University",
"id": "https://www.grid.ac/institutes/grid.5675.1",
"name": [
"Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany",
"Center for Integrated Protein Science (CiPSM), Munich, Germany",
"Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Stra\u00dfe 4a, 44227, Dortmund, Germany"
],
"type": "Organization"
},
"familyName": "Linser",
"givenName": "Rasmus",
"id": "sg:person.01351713533.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351713533.18"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1002/(sici)1096-987x(19970115)18:1<139::aid-jcc13>3.0.co;2-h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000128522"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.pnmrs.2010.07.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000297926"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1039/c2cp23872a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001180693"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.pnmrs.2015.07.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003365005"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0079-6565(03)00022-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009031531"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0079-6565(03)00022-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009031531"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/128_2011_189",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009324015",
"https://doi.org/10.1007/128_2011_189"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/128_2011_189",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009324015",
"https://doi.org/10.1007/128_2011_189"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0033583516000159",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010235628"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10858-015-9956-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014730867",
"https://doi.org/10.1007/s10858-015-9956-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1039/c5cc09160h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015172694"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10858-012-9611-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015467786",
"https://doi.org/10.1007/s10858-012-9611-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0504818102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022152168"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10858-008-9266-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026481648",
"https://doi.org/10.1007/s10858-008-9266-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/jp5126415",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028483432"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10858-015-9945-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029242099",
"https://doi.org/10.1007/s10858-015-9945-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-2364(78)90176-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029587916"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10858-014-9859-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035902470",
"https://doi.org/10.1007/s10858-014-9859-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja504603g",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036004129"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja305091n",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037057740"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ar400244v",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038629223"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10858-006-0030-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040911782",
"https://doi.org/10.1007/s10858-006-0030-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja908004w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041488107"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja908004w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041488107"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmr.2007.09.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042313856"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10858-013-9731-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043683582",
"https://doi.org/10.1007/s10858-013-9731-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/b:jnmr.0000042954.99056.ad",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046844068",
"https://doi.org/10.1023/b:jnmr.0000042954.99056.ad"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00202037",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048710670",
"https://doi.org/10.1007/bf00202037"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00202037",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048710670",
"https://doi.org/10.1007/bf00202037"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/anie.200702905",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049957120"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10858-008-9243-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050254287",
"https://doi.org/10.1007/s10858-008-9243-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmr.2013.02.021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052211314"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja049432q",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055838077"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja049432q",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055838077"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja108383x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055848631"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja108383x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055848631"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja803161d",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055858537"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja803161d",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055858537"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.128.2042",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060426044"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.128.2042",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060426044"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/sciadv.1501087",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062439975"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ange.201706060",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086118308"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cphc.201700572",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091100441"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/acs.jpclett.8b00110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101219860"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/acs.accounts.8b00055",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103992350"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-12",
"datePublishedReg": "2018-12-01",
"description": "Given that solid-state NMR is being used for protein samples of increasing molecular weight and complexity, higher-dimensionality methods are likely to be more and more indispensable for unambiguous chemical shift assignments in the near future. In addition, solid-state NMR spectral properties are increasingly comparable with solution NMR, allowing adaptation of more sophisticated solution NMR strategies for the solid state in addition to the conventional methodology. Assessing first principles, here we demonstrate the application of automated projection spectroscopy for a micro-crystalline protein in the solid state.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10858-018-0215-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1101518",
"issn": [
"0925-2738",
"1573-5001"
],
"name": "Journal of Biomolecular NMR",
"type": "Periodical"
}
],
"name": "Automated projection spectroscopy in solid-state NMR",
"pagination": "1-8",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"5c94a8739da5668e887becd45db9b2c5325457560564f9a5e994a19350ecb1b4"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30430291"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"9110829"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10858-018-0215-0"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1109899583"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10858-018-0215-0",
"https://app.dimensions.ai/details/publication/pub.1109899583"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T08:07",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000265_0000000265/records_67382_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10858-018-0215-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-0215-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-0215-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-0215-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-0215-0'
This table displays all metadata directly associated to this object as RDF triples.
204 TRIPLES
21 PREDICATES
64 URIs
19 LITERALS
7 BLANK NODES