Selective suppression of excipient signals in 2D 1H–13C methyl spectra of biopharmaceutical products View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Luke W. Arbogast, Frank Delaglio, Joel R. Tolman, John P. Marino

ABSTRACT

While the use of 1H-13C methyl correlated NMR spectroscopy at natural isotopic abundance has been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies, spectral interference from aliphatic excipients remains a significant obstacle to its widespread application. These signals can cause large baseline artifacts, obscure protein resonances, and cause dynamic range suppression of weak peaks in non-uniform sampling applications, thus hampering both traditional peak-based spectral analyses as well as emerging chemometric methods of analysis. Here we detail modifications to the 2D 1H-13C gradient-selected HSQC experiment that make use of selective pulsing techniques for targeted removal of interfering excipient signals in spectra of the NISTmAb prepared in several different formulations. This approach is demonstrated to selectively reduce interfering excipient signals while still yielding 2D spectra with only modest losses in protein signal. Furthermore, it is shown that spectral modeling based on the SMILE algorithm can be used to simulate and subtract any residual excipient signals and their attendant artifacts from the resulting 2D NMR spectra. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10858-018-0214-1

DOI

http://dx.doi.org/10.1007/s10858-018-0214-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110226766

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30483914


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, 9600 Gudelsky Dr., 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arbogast", 
        "givenName": "Luke W.", 
        "id": "sg:person.01166354676.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166354676.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, 9600 Gudelsky Dr., 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delaglio", 
        "givenName": "Frank", 
        "id": "sg:person.0742660467.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742660467.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., 21218, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolman", 
        "givenName": "Joel R.", 
        "id": "sg:person.0777104315.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777104315.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, 9600 Gudelsky Dr., 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marino", 
        "givenName": "John P.", 
        "id": "sg:person.015263411242.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263411242.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00197809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001469691", 
          "https://doi.org/10.1007/bf00197809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00197809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001469691", 
          "https://doi.org/10.1007/bf00197809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2013.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004296013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00175254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009330408", 
          "https://doi.org/10.1007/bf00175254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(90)87025-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011895742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejpb.2014.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014620597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cphc.200300905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018777706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.mie.2015.09.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018789576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-0534(2000)12:3<103::aid-cmr1>3.0.co;2-#", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021876550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023407129", 
          "https://doi.org/10.1038/nbt.3474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/002689798166396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027063754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2013.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027678778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep32201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034497407", 
          "https://doi.org/10.1038/srep32201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-015-1802-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038890267", 
          "https://doi.org/10.1007/s11095-015-1802-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-016-0072-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039603067", 
          "https://doi.org/10.1007/s10858-016-0072-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-016-0072-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039603067", 
          "https://doi.org/10.1007/s10858-016-0072-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jnmr.0000034354.30702.de", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048267345", 
          "https://doi.org/10.1023/b:jnmr.0000034354.30702.de"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac401867f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049292184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac504804m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055020162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac7026222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055069728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac7026222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055069728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.5b03777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055079221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.481958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058081742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpba.2017.03.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084529055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpba.2017.03.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084529055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpba.2017.03.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084529055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.xphs.2017.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091322748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.7b03571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091932217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.7b03571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091932217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12249-017-0911-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092563013", 
          "https://doi.org/10.1208/s12249-017-0911-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "While the use of 1H-13C methyl correlated NMR spectroscopy at natural isotopic abundance has been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies, spectral interference from aliphatic excipients remains a significant obstacle to its widespread application. These signals can cause large baseline artifacts, obscure protein resonances, and cause dynamic range suppression of weak peaks in non-uniform sampling applications, thus hampering both traditional peak-based spectral analyses as well as emerging chemometric methods of analysis. Here we detail modifications to the 2D 1H-13C gradient-selected HSQC experiment that make use of selective pulsing techniques for targeted removal of interfering excipient signals in spectra of the NISTmAb prepared in several different formulations. This approach is demonstrated to selectively reduce interfering excipient signals while still yielding 2D spectra with only modest losses in protein signal. Furthermore, it is shown that spectral modeling based on the SMILE algorithm can be used to simulate and subtract any residual excipient signals and their attendant artifacts from the resulting 2D NMR spectra.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10858-018-0214-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1101518", 
        "issn": [
          "0925-2738", 
          "1573-5001"
        ], 
        "name": "Journal of Biomolecular NMR", 
        "type": "Periodical"
      }
    ], 
    "name": "Selective suppression of excipient signals in 2D 1H\u201313C methyl spectra of biopharmaceutical products", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f37b2286a92b0bec0c7a7b6e9cf168633e8e2ec0572445c4095fb115b3c9611"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30483914"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9110829"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10858-018-0214-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110226766"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10858-018-0214-1", 
      "https://app.dimensions.ai/details/publication/pub.1110226766"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79624_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10858-018-0214-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-0214-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-0214-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-0214-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-0214-1'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10858-018-0214-1 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N0be0d222c8bb48c6b833366aa1276ae0
4 schema:citation sg:pub.10.1007/bf00175254
5 sg:pub.10.1007/bf00197809
6 sg:pub.10.1007/s10858-016-0072-7
7 sg:pub.10.1007/s11095-015-1802-3
8 sg:pub.10.1023/b:jnmr.0000034354.30702.de
9 sg:pub.10.1038/nbt.3474
10 sg:pub.10.1038/srep32201
11 sg:pub.10.1208/s12249-017-0911-1
12 https://doi.org/10.1002/(sici)1099-0534(2000)12:3<103::aid-cmr1>3.0.co;2-#
13 https://doi.org/10.1002/cphc.200300905
14 https://doi.org/10.1016/0009-2614(90)87025-m
15 https://doi.org/10.1016/bs.mie.2015.09.037
16 https://doi.org/10.1016/j.ejpb.2014.12.015
17 https://doi.org/10.1016/j.jmr.2013.06.024
18 https://doi.org/10.1016/j.jpba.2017.03.063
19 https://doi.org/10.1016/j.trac.2013.03.009
20 https://doi.org/10.1016/j.xphs.2017.08.011
21 https://doi.org/10.1021/ac401867f
22 https://doi.org/10.1021/ac504804m
23 https://doi.org/10.1021/ac7026222
24 https://doi.org/10.1021/acs.analchem.5b03777
25 https://doi.org/10.1021/acs.analchem.7b03571
26 https://doi.org/10.1063/1.481958
27 https://doi.org/10.1080/002689798166396
28 schema:datePublished 2018-12
29 schema:datePublishedReg 2018-12-01
30 schema:description While the use of <sup>1</sup>H-<sup>13</sup>C methyl correlated NMR spectroscopy at natural isotopic abundance has been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies, spectral interference from aliphatic excipients remains a significant obstacle to its widespread application. These signals can cause large baseline artifacts, obscure protein resonances, and cause dynamic range suppression of weak peaks in non-uniform sampling applications, thus hampering both traditional peak-based spectral analyses as well as emerging chemometric methods of analysis. Here we detail modifications to the 2D <sup>1</sup>H-<sup>13</sup>C gradient-selected HSQC experiment that make use of selective pulsing techniques for targeted removal of interfering excipient signals in spectra of the NISTmAb prepared in several different formulations. This approach is demonstrated to selectively reduce interfering excipient signals while still yielding 2D spectra with only modest losses in protein signal. Furthermore, it is shown that spectral modeling based on the SMILE algorithm can be used to simulate and subtract any residual excipient signals and their attendant artifacts from the resulting 2D NMR spectra.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf sg:journal.1101518
35 schema:name Selective suppression of excipient signals in 2D 1H–13C methyl spectra of biopharmaceutical products
36 schema:pagination 1-13
37 schema:productId N06673fa3ce674ebf894b3d57d66744e1
38 N3ffbaf771d6542a0960fd2f3b565c580
39 N48905e00c9d4462788d1091ada2eb45f
40 N69997e11a86047659c7f0f10198da6cb
41 Naae077acfb864a27902d570278af11ea
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110226766
43 https://doi.org/10.1007/s10858-018-0214-1
44 schema:sdDatePublished 2019-04-11T08:16
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N181d2c4d651a4390891d50babb68f681
47 schema:url https://link.springer.com/10.1007%2Fs10858-018-0214-1
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N06673fa3ce674ebf894b3d57d66744e1 schema:name dimensions_id
52 schema:value pub.1110226766
53 rdf:type schema:PropertyValue
54 N0be0d222c8bb48c6b833366aa1276ae0 rdf:first sg:person.01166354676.26
55 rdf:rest Nf65e41c22a7d45298bf03fb6fec8b474
56 N181d2c4d651a4390891d50babb68f681 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N3ffbaf771d6542a0960fd2f3b565c580 schema:name readcube_id
59 schema:value 9f37b2286a92b0bec0c7a7b6e9cf168633e8e2ec0572445c4095fb115b3c9611
60 rdf:type schema:PropertyValue
61 N48905e00c9d4462788d1091ada2eb45f schema:name nlm_unique_id
62 schema:value 9110829
63 rdf:type schema:PropertyValue
64 N69997e11a86047659c7f0f10198da6cb schema:name pubmed_id
65 schema:value 30483914
66 rdf:type schema:PropertyValue
67 N929c460665964438ab341fe82a3f2ab3 rdf:first sg:person.015263411242.16
68 rdf:rest rdf:nil
69 Naae077acfb864a27902d570278af11ea schema:name doi
70 schema:value 10.1007/s10858-018-0214-1
71 rdf:type schema:PropertyValue
72 Ne126ec6285b34c92b4af3798800a9279 rdf:first sg:person.0777104315.56
73 rdf:rest N929c460665964438ab341fe82a3f2ab3
74 Nf65e41c22a7d45298bf03fb6fec8b474 rdf:first sg:person.0742660467.31
75 rdf:rest Ne126ec6285b34c92b4af3798800a9279
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
80 schema:name Other Physical Sciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1101518 schema:issn 0925-2738
83 1573-5001
84 schema:name Journal of Biomolecular NMR
85 rdf:type schema:Periodical
86 sg:person.01166354676.26 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
87 schema:familyName Arbogast
88 schema:givenName Luke W.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166354676.26
90 rdf:type schema:Person
91 sg:person.015263411242.16 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
92 schema:familyName Marino
93 schema:givenName John P.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263411242.16
95 rdf:type schema:Person
96 sg:person.0742660467.31 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
97 schema:familyName Delaglio
98 schema:givenName Frank
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742660467.31
100 rdf:type schema:Person
101 sg:person.0777104315.56 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
102 schema:familyName Tolman
103 schema:givenName Joel R.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777104315.56
105 rdf:type schema:Person
106 sg:pub.10.1007/bf00175254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009330408
107 https://doi.org/10.1007/bf00175254
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf00197809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001469691
110 https://doi.org/10.1007/bf00197809
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10858-016-0072-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039603067
113 https://doi.org/10.1007/s10858-016-0072-7
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11095-015-1802-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038890267
116 https://doi.org/10.1007/s11095-015-1802-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1023/b:jnmr.0000034354.30702.de schema:sameAs https://app.dimensions.ai/details/publication/pub.1048267345
119 https://doi.org/10.1023/b:jnmr.0000034354.30702.de
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nbt.3474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023407129
122 https://doi.org/10.1038/nbt.3474
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/srep32201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034497407
125 https://doi.org/10.1038/srep32201
126 rdf:type schema:CreativeWork
127 sg:pub.10.1208/s12249-017-0911-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092563013
128 https://doi.org/10.1208/s12249-017-0911-1
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/(sici)1099-0534(2000)12:3<103::aid-cmr1>3.0.co;2-# schema:sameAs https://app.dimensions.ai/details/publication/pub.1021876550
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/cphc.200300905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018777706
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0009-2614(90)87025-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1011895742
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/bs.mie.2015.09.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018789576
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ejpb.2014.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014620597
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jmr.2013.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004296013
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jpba.2017.03.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084529055
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.trac.2013.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027678778
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.xphs.2017.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091322748
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/ac401867f schema:sameAs https://app.dimensions.ai/details/publication/pub.1049292184
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/ac504804m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055020162
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/ac7026222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055069728
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/acs.analchem.5b03777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055079221
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/acs.analchem.7b03571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091932217
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.481958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058081742
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/002689798166396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027063754
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
163 schema:name Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., 21218, Baltimore, MD, USA
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
166 schema:name Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, 9600 Gudelsky Dr., 20850, Rockville, MD, USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...