Increasing the buffering capacity of minimal media leads to higher protein yield View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Stephan B. Azatian, Navneet Kaur, Michael P. Latham

ABSTRACT

We describe a general and simple modification to the standard M9 minimal medium recipe that leads to an approximate twofold increase in the yield of heterologously expressed proteins in Escherichia coli BL21(DE3) bacteria. We monitored the growth of bacteria transformed with plasmids for three different test proteins in five minimal media with different concentrations of buffering salts and/or initial media pH. After purification of the over-expressed proteins, we found a clear correlation between the protein yield and change in media pH over time, where the minimal media that were the most buffered and therefore most resistant to change in pH produced the most protein. And in all three test protein cases, the difference in yield was nearly twofold between the best and worst buffering media. Thus, we propose that increasing the buffering capacity of M9 minimal media will generally lead to a similar increase for most of the proteins currently produced by this standard protein expression protocol. Moreover, we have qualitatively found that this effect also extends to deuterated M9 minimal media growths, which could lead to significant cost savings in these preparations. More... »

PAGES

11-17

Journal

TITLE

Journal of Biomolecular NMR

ISSUE

1-2

VOLUME

73

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10858-018-00222-4

    DOI

    http://dx.doi.org/10.1007/s10858-018-00222-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111218632

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30613903


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Texas Tech University", 
              "id": "https://www.grid.ac/institutes/grid.264784.b", 
              "name": [
                "Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Ave., 79423-1061, Lubbock, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Azatian", 
            "givenName": "Stephan B.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Texas Tech University", 
              "id": "https://www.grid.ac/institutes/grid.264784.b", 
              "name": [
                "Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Ave., 79423-1061, Lubbock, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaur", 
            "givenName": "Navneet", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Texas Tech University", 
              "id": "https://www.grid.ac/institutes/grid.264784.b", 
              "name": [
                "Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Ave., 79423-1061, Lubbock, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Latham", 
            "givenName": "Michael P.", 
            "id": "sg:person.01041254061.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041254061.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11010-007-9603-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005827449", 
              "https://doi.org/10.1007/s11010-007-9603-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1996.0399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012414233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.32.5.120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013037058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00182275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014377779", 
              "https://doi.org/10.1007/bf00182275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biophys.27.1.357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020294282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-440x(97)80084-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020894588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(84)90220-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022248244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(84)90220-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022248244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-016-0052-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022319922", 
              "https://doi.org/10.1007/s10858-016-0052-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-016-0052-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022319922", 
              "https://doi.org/10.1007/s10858-016-0052-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pep.2004.04.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022437925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(77)90000-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044383550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pep.2005.01.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048782637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2014.00172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053633766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi9624806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055213011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi9624806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055213011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083214851", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-018-0179-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104125342", 
              "https://doi.org/10.1007/s10858-018-0179-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-018-0200-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105980872", 
              "https://doi.org/10.1007/s10858-018-0200-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "We describe a general and simple modification to the standard M9 minimal medium recipe that leads to an approximate twofold increase in the yield of heterologously expressed proteins in Escherichia coli BL21(DE3) bacteria. We monitored the growth of bacteria transformed with plasmids for three different test proteins in five minimal media with different concentrations of buffering salts and/or initial media pH. After purification of the over-expressed proteins, we found a clear correlation between the protein yield and change in media pH over time, where the minimal media that were the most buffered and therefore most resistant to change in pH produced the most protein. And in all three test protein cases, the difference in yield was nearly twofold between the best and worst buffering media. Thus, we propose that increasing the buffering capacity of M9 minimal media will generally lead to a similar increase for most of the proteins currently produced by this standard protein expression protocol. Moreover, we have qualitatively found that this effect also extends to deuterated M9 minimal media growths, which could lead to significant cost savings in these preparations.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10858-018-00222-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7752028", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1101518", 
            "issn": [
              "0925-2738", 
              "1573-5001"
            ], 
            "name": "Journal of Biomolecular NMR", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "73"
          }
        ], 
        "name": "Increasing the buffering capacity of minimal media leads to higher protein yield", 
        "pagination": "11-17", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "61c6da8c7ed299607aa5b79a23594339f382bbfff96c76f7945f9102f3d357b2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30613903"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9110829"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10858-018-00222-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111218632"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10858-018-00222-4", 
          "https://app.dimensions.ai/details/publication/pub.1111218632"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10858-018-00222-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-00222-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-00222-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-00222-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10858-018-00222-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    135 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10858-018-00222-4 schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author N0457353ab2ba4ce29d2ca4a7d7eb46a6
    4 schema:citation sg:pub.10.1007/bf00182275
    5 sg:pub.10.1007/s10858-016-0052-y
    6 sg:pub.10.1007/s10858-018-0179-0
    7 sg:pub.10.1007/s10858-018-0200-7
    8 sg:pub.10.1007/s11010-007-9603-6
    9 https://app.dimensions.ai/details/publication/pub.1083214851
    10 https://doi.org/10.1006/jmbi.1996.0399
    11 https://doi.org/10.1016/0378-1119(77)90000-2
    12 https://doi.org/10.1016/0378-1119(84)90220-8
    13 https://doi.org/10.1016/j.pep.2004.04.025
    14 https://doi.org/10.1016/j.pep.2005.01.016
    15 https://doi.org/10.1016/s0959-440x(97)80084-x
    16 https://doi.org/10.1021/bi9624806
    17 https://doi.org/10.1073/pnas.32.5.120
    18 https://doi.org/10.1146/annurev.biophys.27.1.357
    19 https://doi.org/10.3389/fmicb.2014.00172
    20 schema:datePublished 2019-02
    21 schema:datePublishedReg 2019-02-01
    22 schema:description We describe a general and simple modification to the standard M9 minimal medium recipe that leads to an approximate twofold increase in the yield of heterologously expressed proteins in Escherichia coli BL21(DE3) bacteria. We monitored the growth of bacteria transformed with plasmids for three different test proteins in five minimal media with different concentrations of buffering salts and/or initial media pH. After purification of the over-expressed proteins, we found a clear correlation between the protein yield and change in media pH over time, where the minimal media that were the most buffered and therefore most resistant to change in pH produced the most protein. And in all three test protein cases, the difference in yield was nearly twofold between the best and worst buffering media. Thus, we propose that increasing the buffering capacity of M9 minimal media will generally lead to a similar increase for most of the proteins currently produced by this standard protein expression protocol. Moreover, we have qualitatively found that this effect also extends to deuterated M9 minimal media growths, which could lead to significant cost savings in these preparations.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N1add69eed0f64e6090e6433f7e6dd78f
    27 Nf9cbcfb8fa2545f39f0059af5804291e
    28 sg:journal.1101518
    29 schema:name Increasing the buffering capacity of minimal media leads to higher protein yield
    30 schema:pagination 11-17
    31 schema:productId N37dc14f09bb445af85a5c2e99eeea0a7
    32 N4e58fc191d904b85b57f5466888efe5f
    33 N56a83af020e64965a691edf335665ab4
    34 N59b75a3aaccd40d28f1caff9aff9a0ec
    35 N6c71a0a23819458aa0b09ca971aa1d54
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111218632
    37 https://doi.org/10.1007/s10858-018-00222-4
    38 schema:sdDatePublished 2019-04-11T14:02
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Nfca44b8f2ac9476c8e3755ce2c3c1af4
    41 schema:url https://link.springer.com/10.1007%2Fs10858-018-00222-4
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N0457353ab2ba4ce29d2ca4a7d7eb46a6 rdf:first N74bc37676bad48efbc29e67d35a8f49a
    46 rdf:rest Nc8fbe1a8a948482d81ac19abeea60883
    47 N1add69eed0f64e6090e6433f7e6dd78f schema:issueNumber 1-2
    48 rdf:type schema:PublicationIssue
    49 N37dc14f09bb445af85a5c2e99eeea0a7 schema:name doi
    50 schema:value 10.1007/s10858-018-00222-4
    51 rdf:type schema:PropertyValue
    52 N4e58fc191d904b85b57f5466888efe5f schema:name nlm_unique_id
    53 schema:value 9110829
    54 rdf:type schema:PropertyValue
    55 N56a83af020e64965a691edf335665ab4 schema:name readcube_id
    56 schema:value 61c6da8c7ed299607aa5b79a23594339f382bbfff96c76f7945f9102f3d357b2
    57 rdf:type schema:PropertyValue
    58 N59b75a3aaccd40d28f1caff9aff9a0ec schema:name pubmed_id
    59 schema:value 30613903
    60 rdf:type schema:PropertyValue
    61 N6c71a0a23819458aa0b09ca971aa1d54 schema:name dimensions_id
    62 schema:value pub.1111218632
    63 rdf:type schema:PropertyValue
    64 N74bc37676bad48efbc29e67d35a8f49a schema:affiliation https://www.grid.ac/institutes/grid.264784.b
    65 schema:familyName Azatian
    66 schema:givenName Stephan B.
    67 rdf:type schema:Person
    68 Nc8fbe1a8a948482d81ac19abeea60883 rdf:first Necb8a902c8954c2da0da9e733124b477
    69 rdf:rest Nf46ee113ddce4feb83affab511dcf125
    70 Necb8a902c8954c2da0da9e733124b477 schema:affiliation https://www.grid.ac/institutes/grid.264784.b
    71 schema:familyName Kaur
    72 schema:givenName Navneet
    73 rdf:type schema:Person
    74 Nf46ee113ddce4feb83affab511dcf125 rdf:first sg:person.01041254061.03
    75 rdf:rest rdf:nil
    76 Nf9cbcfb8fa2545f39f0059af5804291e schema:volumeNumber 73
    77 rdf:type schema:PublicationVolume
    78 Nfca44b8f2ac9476c8e3755ce2c3c1af4 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Biological Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Microbiology
    85 rdf:type schema:DefinedTerm
    86 sg:grant.7752028 http://pending.schema.org/fundedItem sg:pub.10.1007/s10858-018-00222-4
    87 rdf:type schema:MonetaryGrant
    88 sg:journal.1101518 schema:issn 0925-2738
    89 1573-5001
    90 schema:name Journal of Biomolecular NMR
    91 rdf:type schema:Periodical
    92 sg:person.01041254061.03 schema:affiliation https://www.grid.ac/institutes/grid.264784.b
    93 schema:familyName Latham
    94 schema:givenName Michael P.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041254061.03
    96 rdf:type schema:Person
    97 sg:pub.10.1007/bf00182275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377779
    98 https://doi.org/10.1007/bf00182275
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10858-016-0052-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022319922
    101 https://doi.org/10.1007/s10858-016-0052-y
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10858-018-0179-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104125342
    104 https://doi.org/10.1007/s10858-018-0179-0
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s10858-018-0200-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105980872
    107 https://doi.org/10.1007/s10858-018-0200-7
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s11010-007-9603-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005827449
    110 https://doi.org/10.1007/s11010-007-9603-6
    111 rdf:type schema:CreativeWork
    112 https://app.dimensions.ai/details/publication/pub.1083214851 schema:CreativeWork
    113 https://doi.org/10.1006/jmbi.1996.0399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012414233
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0378-1119(77)90000-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044383550
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/0378-1119(84)90220-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022248244
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.pep.2004.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022437925
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.pep.2005.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048782637
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/s0959-440x(97)80084-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020894588
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1021/bi9624806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055213011
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1073/pnas.32.5.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013037058
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1146/annurev.biophys.27.1.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020294282
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.3389/fmicb.2014.00172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053633766
    132 rdf:type schema:CreativeWork
    133 https://www.grid.ac/institutes/grid.264784.b schema:alternateName Texas Tech University
    134 schema:name Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Ave., 79423-1061, Lubbock, TX, USA
    135 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...