Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Jinfa Ying, Frank Delaglio, Dennis A. Torchia, Ad Bax

ABSTRACT

Implementation of a new algorithm, SMILE, is described for reconstruction of non-uniformly sampled two-, three- and four-dimensional NMR data, which takes advantage of the known phases of the NMR spectrum and the exponential decay of underlying time domain signals. The method is very robust with respect to the chosen sampling protocol and, in its default mode, also extends the truncated time domain signals by a modest amount of non-sampled zeros. SMILE can likewise be used to extend conventional uniformly sampled data, as an effective multidimensional alternative to linear prediction. The program is provided as a plug-in to the widely used NMRPipe software suite, and can be used with default parameters for mainstream application, or with user control over the iterative process to possibly further improve reconstruction quality and to lower the demand on computational resources. For large data sets, the method is robust and demonstrated for sparsities down to ca 1%, and final all-real spectral sizes as large as 300 Gb. Comparison between fully sampled, conventionally processed spectra and randomly selected NUS subsets of this data shows that the reconstruction quality approaches the theoretical limit in terms of peak position fidelity and intensity. SMILE essentially removes the noise-like appearance associated with the point-spread function of signals that are a default of five-fold above the noise level, but impacts the actual thermal noise in the NMR spectra only minimally. Therefore, the appearance and interpretation of SMILE-reconstructed spectra is very similar to that of fully sampled spectra generated by Fourier transformation. More... »

PAGES

101-118

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10858-016-0072-7

DOI

http://dx.doi.org/10.1007/s10858-016-0072-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039603067

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27866371


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fourier Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nuclear Magnetic Resonance, Biomolecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "Laboratory of Chemical Physics, National Institute of Digestive and Diabetic and Kidney Diseases, National Institutes of Health, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ying", 
        "givenName": "Jinfa", 
        "id": "sg:person.0644071441.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644071441.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universities at Shady Grove", 
          "id": "https://www.grid.ac/institutes/grid.440664.4", 
          "name": [
            "Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delaglio", 
        "givenName": "Frank", 
        "id": "sg:person.0742660467.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742660467.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Dental and Craniofacial Research", 
          "id": "https://www.grid.ac/institutes/grid.419633.a", 
          "name": [
            "National Institute of Dental and Craniofacial Research, National Institutes of Health, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torchia", 
        "givenName": "Dennis A.", 
        "id": "sg:person.01363726556.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363726556.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "Laboratory of Chemical Physics, National Institute of Digestive and Diabetic and Kidney Diseases, National Institutes of Health, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bax", 
        "givenName": "Ad", 
        "id": "sg:person.011324007057.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324007057.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.pnmrs.2010.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000297926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201100370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000528598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-007-9180-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001337250", 
          "https://doi.org/10.1007/s10858-007-9180-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00197809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001469691", 
          "https://doi.org/10.1007/bf00197809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00197809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001469691", 
          "https://doi.org/10.1007/bf00197809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(92)90221-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002476052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnmrs.2015.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003365005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cc03047h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004649626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-010-9411-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005132450", 
          "https://doi.org/10.1007/s10858-010-9411-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-010-9411-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005132450", 
          "https://doi.org/10.1007/s10858-010-9411-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2015.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005502600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crci.2005.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005594131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrc.4022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010003354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-012-9611-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015467786", 
          "https://doi.org/10.1007/s10858-012-9611-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2011.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017600344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cphc.201402704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018287437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024944720653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018515664", 
          "https://doi.org/10.1023/a:1024944720653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2010.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019647558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.1999.1979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020930476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-012-9643-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022248231", 
          "https://doi.org/10.1007/s10858-012-9643-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2007.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022744498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-008-9275-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024587961", 
          "https://doi.org/10.1007/s10858-008-9275-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnmrs.2014.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025819672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(90)90150-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034845538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-006-9120-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036533646", 
          "https://doi.org/10.1007/s10858-006-9120-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-014-9867-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036713844", 
          "https://doi.org/10.1007/s10858-014-9867-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar400244v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038629223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrc.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039015973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrc.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039015973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja504791j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040238812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-006-0030-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040911782", 
          "https://doi.org/10.1007/s10858-006-0030-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja908004w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041488107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja908004w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041488107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnmrs.2010.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043580474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnmrs.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043610189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2014.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043705697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-012-9698-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044658219", 
          "https://doi.org/10.1007/s10858-012-9698-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-013-9793-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045025581", 
          "https://doi.org/10.1007/s10858-013-9793-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201100440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045326434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(84)90150-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045436500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrc.4287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046613903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.biochem.5b00506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047383643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(87)90225-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049014538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmra.1993.1274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049315613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-015-9923-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050595722", 
          "https://doi.org/10.1007/s10858-015-9923-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(86)90122-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052005115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2004.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052483548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2012.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053710577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr00007a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054086500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00215a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055165594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00001a060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055698009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja011669o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055777192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja011669o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055777192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja028197d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja028197d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja044032o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055836105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja044032o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055836105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja052120i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja052120i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja307445y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055853189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja512593s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055857225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja808202q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055859936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja808202q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055859936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja902012x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055861030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja902012x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055861030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja960106n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055864585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja960106n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055864585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9616239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055865267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9616239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055865267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2377896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062534735"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "Implementation of a new algorithm, SMILE, is described for reconstruction of non-uniformly sampled two-, three- and four-dimensional NMR data, which takes advantage of the known phases of the NMR spectrum and the exponential decay of underlying time domain signals. The method is very robust with respect to the chosen sampling protocol and, in its default mode, also extends the truncated time domain signals by a modest amount of non-sampled zeros. SMILE can likewise be used to extend conventional uniformly sampled data, as an effective multidimensional alternative to linear prediction. The program is provided as a plug-in to the widely used NMRPipe software suite, and can be used with default parameters for mainstream application, or with user control over the iterative process to possibly further improve reconstruction quality and to lower the demand on computational resources. For large data sets, the method is robust and demonstrated for sparsities down to ca 1%, and final all-real spectral sizes as large as 300\u00a0Gb. Comparison between fully sampled, conventionally processed spectra and randomly selected NUS subsets of this data shows that the reconstruction quality approaches the theoretical limit in terms of peak position fidelity and intensity. SMILE essentially removes the noise-like appearance associated with the point-spread function of signals that are a default of five-fold above the noise level, but impacts the actual thermal noise in the NMR spectra only minimally. Therefore, the appearance and interpretation of SMILE-reconstructed spectra is very similar to that of fully sampled spectra generated by Fourier transformation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10858-016-0072-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2724755", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2724757", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1101518", 
        "issn": [
          "0925-2738", 
          "1573-5001"
        ], 
        "name": "Journal of Biomolecular NMR", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data", 
    "pagination": "101-118", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bca66713f23e640d794651f3abe8cee353e19018a2f119b9d2bebddcba0b92d3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27866371"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9110829"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10858-016-0072-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039603067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10858-016-0072-7", 
      "https://app.dimensions.ai/details/publication/pub.1039603067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70058_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10858-016-0072-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10858-016-0072-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10858-016-0072-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10858-016-0072-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10858-016-0072-7'


 

This table displays all metadata directly associated to this object as RDF triples.

319 TRIPLES      21 PREDICATES      95 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10858-016-0072-7 schema:about N197219fedf044f6d93bf8876bd80ac4d
2 N70492185fb1b4ad2961641f3c70742a1
3 N8d2d24e85ba94609beb19bf6539b62ee
4 N8d9b4692906f45a0a087114fc83d3ffa
5 N9af1930f4ba94fa4a9874c9c5ce03dae
6 Nc55f19dffffe4ee194d88d2f4a8e4c01
7 Ncc849923d4f04847ad75cabe95ecf84d
8 Ne3cab182935f4fa18dc110fca29b20b0
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author Nd193331aecd6495ba18fb4e3634623f4
12 schema:citation sg:pub.10.1007/bf00197809
13 sg:pub.10.1007/s10858-006-0030-x
14 sg:pub.10.1007/s10858-006-9120-z
15 sg:pub.10.1007/s10858-007-9180-8
16 sg:pub.10.1007/s10858-008-9275-x
17 sg:pub.10.1007/s10858-010-9411-2
18 sg:pub.10.1007/s10858-012-9611-z
19 sg:pub.10.1007/s10858-012-9643-4
20 sg:pub.10.1007/s10858-012-9698-2
21 sg:pub.10.1007/s10858-013-9793-z
22 sg:pub.10.1007/s10858-014-9867-6
23 sg:pub.10.1007/s10858-015-9923-x
24 sg:pub.10.1023/a:1024944720653
25 https://doi.org/10.1002/anie.201100370
26 https://doi.org/10.1002/anie.201100440
27 https://doi.org/10.1002/cphc.201402704
28 https://doi.org/10.1002/mrc.1752
29 https://doi.org/10.1002/mrc.4022
30 https://doi.org/10.1002/mrc.4287
31 https://doi.org/10.1006/jmra.1993.1274
32 https://doi.org/10.1006/jmre.1999.1979
33 https://doi.org/10.1016/0022-2364(84)90150-1
34 https://doi.org/10.1016/0022-2364(86)90122-8
35 https://doi.org/10.1016/0022-2364(87)90225-3
36 https://doi.org/10.1016/0022-2364(90)90150-8
37 https://doi.org/10.1016/0022-2364(92)90221-r
38 https://doi.org/10.1016/j.crci.2005.06.013
39 https://doi.org/10.1016/j.jmr.2004.05.016
40 https://doi.org/10.1016/j.jmr.2007.07.008
41 https://doi.org/10.1016/j.jmr.2010.02.017
42 https://doi.org/10.1016/j.jmr.2011.10.009
43 https://doi.org/10.1016/j.jmr.2012.07.002
44 https://doi.org/10.1016/j.pnmrs.2010.07.001
45 https://doi.org/10.1016/j.pnmrs.2010.07.002
46 https://doi.org/10.1016/j.pnmrs.2011.02.002
47 https://doi.org/10.1016/j.pnmrs.2014.09.002
48 https://doi.org/10.1016/j.pnmrs.2015.07.001
49 https://doi.org/10.1016/j.str.2014.05.018
50 https://doi.org/10.1016/j.str.2015.05.003
51 https://doi.org/10.1021/acs.biochem.5b00506
52 https://doi.org/10.1021/ar400244v
53 https://doi.org/10.1021/bi00215a002
54 https://doi.org/10.1021/cr00007a007
55 https://doi.org/10.1021/ja00001a060
56 https://doi.org/10.1021/ja011669o
57 https://doi.org/10.1021/ja028197d
58 https://doi.org/10.1021/ja044032o
59 https://doi.org/10.1021/ja052120i
60 https://doi.org/10.1021/ja307445y
61 https://doi.org/10.1021/ja504791j
62 https://doi.org/10.1021/ja512593s
63 https://doi.org/10.1021/ja808202q
64 https://doi.org/10.1021/ja902012x
65 https://doi.org/10.1021/ja908004w
66 https://doi.org/10.1021/ja960106n
67 https://doi.org/10.1021/ja9616239
68 https://doi.org/10.1039/c4cc03047h
69 https://doi.org/10.1126/science.2377896
70 schema:datePublished 2017-06
71 schema:datePublishedReg 2017-06-01
72 schema:description Implementation of a new algorithm, SMILE, is described for reconstruction of non-uniformly sampled two-, three- and four-dimensional NMR data, which takes advantage of the known phases of the NMR spectrum and the exponential decay of underlying time domain signals. The method is very robust with respect to the chosen sampling protocol and, in its default mode, also extends the truncated time domain signals by a modest amount of non-sampled zeros. SMILE can likewise be used to extend conventional uniformly sampled data, as an effective multidimensional alternative to linear prediction. The program is provided as a plug-in to the widely used NMRPipe software suite, and can be used with default parameters for mainstream application, or with user control over the iterative process to possibly further improve reconstruction quality and to lower the demand on computational resources. For large data sets, the method is robust and demonstrated for sparsities down to ca 1%, and final all-real spectral sizes as large as 300 Gb. Comparison between fully sampled, conventionally processed spectra and randomly selected NUS subsets of this data shows that the reconstruction quality approaches the theoretical limit in terms of peak position fidelity and intensity. SMILE essentially removes the noise-like appearance associated with the point-spread function of signals that are a default of five-fold above the noise level, but impacts the actual thermal noise in the NMR spectra only minimally. Therefore, the appearance and interpretation of SMILE-reconstructed spectra is very similar to that of fully sampled spectra generated by Fourier transformation.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree false
76 schema:isPartOf N17908e29311c4c4d9fec462b43d0ddd2
77 N7df507cc895d4d5eacbd349177096087
78 sg:journal.1101518
79 schema:name Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data
80 schema:pagination 101-118
81 schema:productId N39e341d9833143f7a839e7d96523b407
82 N4887cca9257c453992927aa9b9431bab
83 N8c0c1d2c76f74067a994c279809e23a8
84 Ne10801daeedf4435b0f9d1b6138526d7
85 Ne9fac86b9fdf4d3b8b484468eb737106
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039603067
87 https://doi.org/10.1007/s10858-016-0072-7
88 schema:sdDatePublished 2019-04-11T12:42
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N417fbfbf3c95423f89c5059fc576ea27
91 schema:url https://link.springer.com/10.1007%2Fs10858-016-0072-7
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N17908e29311c4c4d9fec462b43d0ddd2 schema:volumeNumber 68
96 rdf:type schema:PublicationVolume
97 N197219fedf044f6d93bf8876bd80ac4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Computer Simulation
99 rdf:type schema:DefinedTerm
100 N39e341d9833143f7a839e7d96523b407 schema:name pubmed_id
101 schema:value 27866371
102 rdf:type schema:PropertyValue
103 N417fbfbf3c95423f89c5059fc576ea27 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N4887cca9257c453992927aa9b9431bab schema:name dimensions_id
106 schema:value pub.1039603067
107 rdf:type schema:PropertyValue
108 N4db539f42c47484691200203cc055d54 rdf:first sg:person.01363726556.90
109 rdf:rest Naa4f302d39f24f66a902ab83856e2b32
110 N70492185fb1b4ad2961641f3c70742a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Signal-To-Noise Ratio
112 rdf:type schema:DefinedTerm
113 N7445cf047ef14788ad0df9348eaa2ee0 rdf:first sg:person.0742660467.31
114 rdf:rest N4db539f42c47484691200203cc055d54
115 N7df507cc895d4d5eacbd349177096087 schema:issueNumber 2
116 rdf:type schema:PublicationIssue
117 N8c0c1d2c76f74067a994c279809e23a8 schema:name readcube_id
118 schema:value bca66713f23e640d794651f3abe8cee353e19018a2f119b9d2bebddcba0b92d3
119 rdf:type schema:PropertyValue
120 N8d2d24e85ba94609beb19bf6539b62ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Sensitivity and Specificity
122 rdf:type schema:DefinedTerm
123 N8d9b4692906f45a0a087114fc83d3ffa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Software
125 rdf:type schema:DefinedTerm
126 N9af1930f4ba94fa4a9874c9c5ce03dae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Time
128 rdf:type schema:DefinedTerm
129 Naa4f302d39f24f66a902ab83856e2b32 rdf:first sg:person.011324007057.32
130 rdf:rest rdf:nil
131 Nc55f19dffffe4ee194d88d2f4a8e4c01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Algorithms
133 rdf:type schema:DefinedTerm
134 Ncc849923d4f04847ad75cabe95ecf84d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Nuclear Magnetic Resonance, Biomolecular
136 rdf:type schema:DefinedTerm
137 Nd193331aecd6495ba18fb4e3634623f4 rdf:first sg:person.0644071441.89
138 rdf:rest N7445cf047ef14788ad0df9348eaa2ee0
139 Ne10801daeedf4435b0f9d1b6138526d7 schema:name doi
140 schema:value 10.1007/s10858-016-0072-7
141 rdf:type schema:PropertyValue
142 Ne3cab182935f4fa18dc110fca29b20b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Fourier Analysis
144 rdf:type schema:DefinedTerm
145 Ne9fac86b9fdf4d3b8b484468eb737106 schema:name nlm_unique_id
146 schema:value 9110829
147 rdf:type schema:PropertyValue
148 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
149 schema:name Information and Computing Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
152 schema:name Artificial Intelligence and Image Processing
153 rdf:type schema:DefinedTerm
154 sg:grant.2724755 http://pending.schema.org/fundedItem sg:pub.10.1007/s10858-016-0072-7
155 rdf:type schema:MonetaryGrant
156 sg:grant.2724757 http://pending.schema.org/fundedItem sg:pub.10.1007/s10858-016-0072-7
157 rdf:type schema:MonetaryGrant
158 sg:journal.1101518 schema:issn 0925-2738
159 1573-5001
160 schema:name Journal of Biomolecular NMR
161 rdf:type schema:Periodical
162 sg:person.011324007057.32 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
163 schema:familyName Bax
164 schema:givenName Ad
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324007057.32
166 rdf:type schema:Person
167 sg:person.01363726556.90 schema:affiliation https://www.grid.ac/institutes/grid.419633.a
168 schema:familyName Torchia
169 schema:givenName Dennis A.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363726556.90
171 rdf:type schema:Person
172 sg:person.0644071441.89 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
173 schema:familyName Ying
174 schema:givenName Jinfa
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644071441.89
176 rdf:type schema:Person
177 sg:person.0742660467.31 schema:affiliation https://www.grid.ac/institutes/grid.440664.4
178 schema:familyName Delaglio
179 schema:givenName Frank
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742660467.31
181 rdf:type schema:Person
182 sg:pub.10.1007/bf00197809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001469691
183 https://doi.org/10.1007/bf00197809
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s10858-006-0030-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040911782
186 https://doi.org/10.1007/s10858-006-0030-x
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s10858-006-9120-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036533646
189 https://doi.org/10.1007/s10858-006-9120-z
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s10858-007-9180-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001337250
192 https://doi.org/10.1007/s10858-007-9180-8
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s10858-008-9275-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024587961
195 https://doi.org/10.1007/s10858-008-9275-x
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s10858-010-9411-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005132450
198 https://doi.org/10.1007/s10858-010-9411-2
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s10858-012-9611-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015467786
201 https://doi.org/10.1007/s10858-012-9611-z
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s10858-012-9643-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022248231
204 https://doi.org/10.1007/s10858-012-9643-4
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s10858-012-9698-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044658219
207 https://doi.org/10.1007/s10858-012-9698-2
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s10858-013-9793-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045025581
210 https://doi.org/10.1007/s10858-013-9793-z
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s10858-014-9867-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036713844
213 https://doi.org/10.1007/s10858-014-9867-6
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s10858-015-9923-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050595722
216 https://doi.org/10.1007/s10858-015-9923-x
217 rdf:type schema:CreativeWork
218 sg:pub.10.1023/a:1024944720653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018515664
219 https://doi.org/10.1023/a:1024944720653
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1002/anie.201100370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000528598
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1002/anie.201100440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045326434
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1002/cphc.201402704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018287437
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1002/mrc.1752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039015973
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/mrc.4022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010003354
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/mrc.4287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046613903
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1006/jmra.1993.1274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049315613
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1006/jmre.1999.1979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020930476
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/0022-2364(84)90150-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045436500
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/0022-2364(86)90122-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052005115
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/0022-2364(87)90225-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049014538
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/0022-2364(90)90150-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034845538
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/0022-2364(92)90221-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1002476052
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.crci.2005.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005594131
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.jmr.2004.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052483548
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jmr.2007.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022744498
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.jmr.2010.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019647558
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.jmr.2011.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017600344
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.jmr.2012.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053710577
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.pnmrs.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043580474
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.pnmrs.2010.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000297926
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.pnmrs.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043610189
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.pnmrs.2014.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025819672
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/j.pnmrs.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003365005
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1016/j.str.2014.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043705697
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1016/j.str.2015.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005502600
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1021/acs.biochem.5b00506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047383643
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1021/ar400244v schema:sameAs https://app.dimensions.ai/details/publication/pub.1038629223
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1021/bi00215a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055165594
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1021/cr00007a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054086500
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1021/ja00001a060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055698009
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1021/ja011669o schema:sameAs https://app.dimensions.ai/details/publication/pub.1055777192
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1021/ja028197d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055831616
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1021/ja044032o schema:sameAs https://app.dimensions.ai/details/publication/pub.1055836105
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1021/ja052120i schema:sameAs https://app.dimensions.ai/details/publication/pub.1055838961
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1021/ja307445y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055853189
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1021/ja504791j schema:sameAs https://app.dimensions.ai/details/publication/pub.1040238812
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1021/ja512593s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055857225
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1021/ja808202q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055859936
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1021/ja902012x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055861030
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1021/ja908004w schema:sameAs https://app.dimensions.ai/details/publication/pub.1041488107
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1021/ja960106n schema:sameAs https://app.dimensions.ai/details/publication/pub.1055864585
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1021/ja9616239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055865267
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1039/c4cc03047h schema:sameAs https://app.dimensions.ai/details/publication/pub.1004649626
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1126/science.2377896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062534735
310 rdf:type schema:CreativeWork
311 https://www.grid.ac/institutes/grid.419633.a schema:alternateName National Institute of Dental and Craniofacial Research
312 schema:name National Institute of Dental and Craniofacial Research, National Institutes of Health, 20892, Bethesda, MD, USA
313 rdf:type schema:Organization
314 https://www.grid.ac/institutes/grid.440664.4 schema:alternateName Universities at Shady Grove
315 schema:name Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 20850, Rockville, MD, USA
316 rdf:type schema:Organization
317 https://www.grid.ac/institutes/grid.94365.3d schema:alternateName National Institutes of Health
318 schema:name Laboratory of Chemical Physics, National Institute of Digestive and Diabetic and Kidney Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
319 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...