High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12-02

AUTHORS

Lindsay J. Sperling, Andrew J. Nieuwkoop, Andrew S. Lipton, Deborah A. Berthold, Chad M. Rienstra

ABSTRACT

Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of 500, 750, and 900 MHz). For two protein systems—GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein—line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C–C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies. More... »

PAGES

149-155

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10858-009-9389-9

DOI

http://dx.doi.org/10.1007/s10858-009-9389-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043046375

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19953303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallography, X-Ray", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Tissue Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nuclear Magnetic Resonance, Biomolecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Disulfide-Isomerases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sperling", 
        "givenName": "Lindsay J.", 
        "id": "sg:person.01026750255.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026750255.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nieuwkoop", 
        "givenName": "Andrew J.", 
        "id": "sg:person.0712305130.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712305130.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 99352, Richland, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.451303.0", 
          "name": [
            "Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 99352, Richland, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lipton", 
        "givenName": "Andrew S.", 
        "id": "sg:person.0633257105.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633257105.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berthold", 
        "givenName": "Deborah A.", 
        "id": "sg:person.01162562132.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162562132.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA", 
            "Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA", 
            "Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rienstra", 
        "givenName": "Chad M.", 
        "id": "sg:person.01260316751.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260316751.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/365464a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047812628", 
          "https://doi.org/10.1038/365464a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008391625633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047979503", 
          "https://doi.org/10.1023/a:1008391625633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008334930603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033554108", 
          "https://doi.org/10.1023/a:1008334930603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00175245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010505080", 
          "https://doi.org/10.1007/bf00175245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011254402785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013814896", 
          "https://doi.org/10.1023/a:1011254402785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006759413", 
          "https://doi.org/10.1038/nature01070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025820611009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021834005", 
          "https://doi.org/10.1023/a:1025820611009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00197809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001469691", 
          "https://doi.org/10.1007/bf00197809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008392405740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038767937", 
          "https://doi.org/10.1023/a:1008392405740"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12-02", 
    "datePublishedReg": "2009-12-02", 
    "description": "Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of 500, 750, and 900\u00a0MHz). For two protein systems\u2014GB1, a 6\u00a0kDa nanocrystalline protein and DsbA, a 21\u00a0kDa nanocrystalline protein\u2014line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C\u2013C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900\u00a0MHz spectra when compared to the 500\u00a0MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine C\u03b41 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10858-009-9389-9", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2518963", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2518711", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1101518", 
        "issn": [
          "0925-2738", 
          "1573-5001"
        ], 
        "name": "Journal of Biomolecular NMR", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "NMR spectroscopy", 
      "Magic Angle Spinning Solid-State NMR Spectroscopy", 
      "spinning (MAS) solid-state NMR spectroscopy", 
      "nanocrystalline proteins", 
      "solid-state NMR spectroscopy", 
      "high-resolution NMR spectroscopy", 
      "resolution NMR spectroscopy", 
      "protein structural studies", 
      "MHz spectrum", 
      "SSNMR spectroscopy", 
      "high-field spectra", 
      "solution NMR", 
      "aliphatic region", 
      "chemical exchange", 
      "structural studies", 
      "spectroscopy", 
      "methyl site", 
      "protein samples", 
      "large proteins", 
      "protein spectra", 
      "DsbA", 
      "spectral region", 
      "protein", 
      "spectra", 
      "NMR", 
      "chemistry", 
      "methine", 
      "C region", 
      "methylene", 
      "field spectra", 
      "number of peaks", 
      "DsbA.", 
      "collection efficiency", 
      "ultra-high magnetic fields", 
      "GB1", 
      "systematic analysis", 
      "sites", 
      "region", 
      "structure", 
      "resolution enhancement", 
      "peak", 
      "enhancement", 
      "resolution", 
      "insights", 
      "efficiency", 
      "exchange", 
      "last decade", 
      "samples", 
      "field", 
      "function", 
      "function of field", 
      "study", 
      "low resolution", 
      "magnetic field", 
      "analysis", 
      "number", 
      "decades", 
      "comparison", 
      "data collection efficiency", 
      "results", 
      "narrowing", 
      "benefits", 
      "Tesla"
    ], 
    "name": "High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field", 
    "pagination": "149-155", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043046375"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10858-009-9389-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19953303"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10858-009-9389-9", 
      "https://app.dimensions.ai/details/publication/pub.1043046375"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_477.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10858-009-9389-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10858-009-9389-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10858-009-9389-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10858-009-9389-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10858-009-9389-9'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      107 URIs      90 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10858-009-9389-9 schema:about N0893af22b75346c9ad8c06135411d76b
2 N1fef31ff09ae4e30bb648671ecb65523
3 N535756737901468cb5b7a0d12a0b4b98
4 N5491b339a5894144934813ae0767b41b
5 N6dc2c88dc25f4f4384034e963d8e7147
6 N9515a148c65546d9875c66d051eead9b
7 N9f2980a216e142519daaa009fbccda17
8 Nda6cc59c1f484639b7edb5b02dd2c236
9 Nf3a9dba04c7e462a84d3a2ca2b9d0a82
10 Nfa88dc2c6f474f70812cbe4661a0b6c6
11 anzsrc-for:02
12 anzsrc-for:0299
13 schema:author Nb2427f82d042416c84ffa7e04f33ccd4
14 schema:citation sg:pub.10.1007/bf00175245
15 sg:pub.10.1007/bf00197809
16 sg:pub.10.1023/a:1008334930603
17 sg:pub.10.1023/a:1008391625633
18 sg:pub.10.1023/a:1008392405740
19 sg:pub.10.1023/a:1011254402785
20 sg:pub.10.1023/a:1025820611009
21 sg:pub.10.1038/365464a0
22 sg:pub.10.1038/nature01070
23 schema:datePublished 2009-12-02
24 schema:datePublishedReg 2009-12-02
25 schema:description Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of 500, 750, and 900 MHz). For two protein systems—GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein—line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C–C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf N86247d1c21354cd282f9abac314864d4
29 Nf700e16ea44e4a819c1370f8a5a603d6
30 sg:journal.1101518
31 schema:keywords C region
32 DsbA
33 DsbA.
34 GB1
35 MHz spectrum
36 Magic Angle Spinning Solid-State NMR Spectroscopy
37 NMR
38 NMR spectroscopy
39 SSNMR spectroscopy
40 Tesla
41 aliphatic region
42 analysis
43 benefits
44 chemical exchange
45 chemistry
46 collection efficiency
47 comparison
48 data collection efficiency
49 decades
50 efficiency
51 enhancement
52 exchange
53 field
54 field spectra
55 function
56 function of field
57 high-field spectra
58 high-resolution NMR spectroscopy
59 insights
60 large proteins
61 last decade
62 low resolution
63 magnetic field
64 methine
65 methyl site
66 methylene
67 nanocrystalline proteins
68 narrowing
69 number
70 number of peaks
71 peak
72 protein
73 protein samples
74 protein spectra
75 protein structural studies
76 region
77 resolution
78 resolution NMR spectroscopy
79 resolution enhancement
80 results
81 samples
82 sites
83 solid-state NMR spectroscopy
84 solution NMR
85 spectra
86 spectral region
87 spectroscopy
88 spinning (MAS) solid-state NMR spectroscopy
89 structural studies
90 structure
91 study
92 systematic analysis
93 ultra-high magnetic fields
94 schema:name High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field
95 schema:pagination 149-155
96 schema:productId N172f9e8c18fd4875a6d9223883865a57
97 N6904a34263864c8ab00ea11450c8ef6e
98 Nfa6564d7fdbb447b9d6505a3c88cf121
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043046375
100 https://doi.org/10.1007/s10858-009-9389-9
101 schema:sdDatePublished 2022-12-01T06:27
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Ncdda3f17204f4a67bf0b5010934c7d7e
104 schema:url https://doi.org/10.1007/s10858-009-9389-9
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N0893af22b75346c9ad8c06135411d76b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Protein Disulfide-Isomerases
110 rdf:type schema:DefinedTerm
111 N095925c9240e4a01a8124357c847b125 rdf:first sg:person.01260316751.40
112 rdf:rest rdf:nil
113 N172f9e8c18fd4875a6d9223883865a57 schema:name dimensions_id
114 schema:value pub.1043046375
115 rdf:type schema:PropertyValue
116 N1fce0b17714242308b5e7562695a3473 rdf:first sg:person.0712305130.58
117 rdf:rest Nf8298a9f1bda49e3b426a272ba01f348
118 N1fef31ff09ae4e30bb648671ecb65523 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Crystallography, X-Ray
120 rdf:type schema:DefinedTerm
121 N2dc7f58be1ab4016a4cb8c877a0b1e98 rdf:first sg:person.01162562132.32
122 rdf:rest N095925c9240e4a01a8124357c847b125
123 N535756737901468cb5b7a0d12a0b4b98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Escherichia coli
125 rdf:type schema:DefinedTerm
126 N5491b339a5894144934813ae0767b41b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Nuclear Magnetic Resonance, Biomolecular
128 rdf:type schema:DefinedTerm
129 N6904a34263864c8ab00ea11450c8ef6e schema:name doi
130 schema:value 10.1007/s10858-009-9389-9
131 rdf:type schema:PropertyValue
132 N6dc2c88dc25f4f4384034e963d8e7147 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Methylation
134 rdf:type schema:DefinedTerm
135 N86247d1c21354cd282f9abac314864d4 schema:issueNumber 2
136 rdf:type schema:PublicationIssue
137 N9515a148c65546d9875c66d051eead9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Magnetics
139 rdf:type schema:DefinedTerm
140 N9f2980a216e142519daaa009fbccda17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Nerve Tissue Proteins
142 rdf:type schema:DefinedTerm
143 Nb2427f82d042416c84ffa7e04f33ccd4 rdf:first sg:person.01026750255.40
144 rdf:rest N1fce0b17714242308b5e7562695a3473
145 Ncdda3f17204f4a67bf0b5010934c7d7e schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 Nda6cc59c1f484639b7edb5b02dd2c236 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Protein Structure, Tertiary
149 rdf:type schema:DefinedTerm
150 Nf3a9dba04c7e462a84d3a2ca2b9d0a82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Escherichia coli Proteins
152 rdf:type schema:DefinedTerm
153 Nf700e16ea44e4a819c1370f8a5a603d6 schema:volumeNumber 46
154 rdf:type schema:PublicationVolume
155 Nf8298a9f1bda49e3b426a272ba01f348 rdf:first sg:person.0633257105.92
156 rdf:rest N2dc7f58be1ab4016a4cb8c877a0b1e98
157 Nfa6564d7fdbb447b9d6505a3c88cf121 schema:name pubmed_id
158 schema:value 19953303
159 rdf:type schema:PropertyValue
160 Nfa88dc2c6f474f70812cbe4661a0b6c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Nanoparticles
162 rdf:type schema:DefinedTerm
163 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
164 schema:name Physical Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
167 schema:name Other Physical Sciences
168 rdf:type schema:DefinedTerm
169 sg:grant.2518711 http://pending.schema.org/fundedItem sg:pub.10.1007/s10858-009-9389-9
170 rdf:type schema:MonetaryGrant
171 sg:grant.2518963 http://pending.schema.org/fundedItem sg:pub.10.1007/s10858-009-9389-9
172 rdf:type schema:MonetaryGrant
173 sg:journal.1101518 schema:issn 0925-2738
174 1573-5001
175 schema:name Journal of Biomolecular NMR
176 schema:publisher Springer Nature
177 rdf:type schema:Periodical
178 sg:person.01026750255.40 schema:affiliation grid-institutes:grid.35403.31
179 schema:familyName Sperling
180 schema:givenName Lindsay J.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026750255.40
182 rdf:type schema:Person
183 sg:person.01162562132.32 schema:affiliation grid-institutes:grid.35403.31
184 schema:familyName Berthold
185 schema:givenName Deborah A.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162562132.32
187 rdf:type schema:Person
188 sg:person.01260316751.40 schema:affiliation grid-institutes:grid.35403.31
189 schema:familyName Rienstra
190 schema:givenName Chad M.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260316751.40
192 rdf:type schema:Person
193 sg:person.0633257105.92 schema:affiliation grid-institutes:grid.451303.0
194 schema:familyName Lipton
195 schema:givenName Andrew S.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633257105.92
197 rdf:type schema:Person
198 sg:person.0712305130.58 schema:affiliation grid-institutes:grid.35403.31
199 schema:familyName Nieuwkoop
200 schema:givenName Andrew J.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712305130.58
202 rdf:type schema:Person
203 sg:pub.10.1007/bf00175245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010505080
204 https://doi.org/10.1007/bf00175245
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/bf00197809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001469691
207 https://doi.org/10.1007/bf00197809
208 rdf:type schema:CreativeWork
209 sg:pub.10.1023/a:1008334930603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033554108
210 https://doi.org/10.1023/a:1008334930603
211 rdf:type schema:CreativeWork
212 sg:pub.10.1023/a:1008391625633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047979503
213 https://doi.org/10.1023/a:1008391625633
214 rdf:type schema:CreativeWork
215 sg:pub.10.1023/a:1008392405740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038767937
216 https://doi.org/10.1023/a:1008392405740
217 rdf:type schema:CreativeWork
218 sg:pub.10.1023/a:1011254402785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013814896
219 https://doi.org/10.1023/a:1011254402785
220 rdf:type schema:CreativeWork
221 sg:pub.10.1023/a:1025820611009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021834005
222 https://doi.org/10.1023/a:1025820611009
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/365464a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047812628
225 https://doi.org/10.1038/365464a0
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nature01070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006759413
228 https://doi.org/10.1038/nature01070
229 rdf:type schema:CreativeWork
230 grid-institutes:grid.35403.31 schema:alternateName Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA
231 Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA
232 schema:name Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA
233 Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA
234 Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 61801, Urbana, IL, USA
235 rdf:type schema:Organization
236 grid-institutes:grid.451303.0 schema:alternateName Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 99352, Richland, WA, USA
237 schema:name Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 99352, Richland, WA, USA
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...