Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-11-28

AUTHORS

Karolin Wey, Matthias Epple

ABSTRACT

Ultrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in-water emulsion-evaporation method was developed to load poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles with autofluorescent ultrasmall gold and silver/gold nanoparticles (diameter 2 nm). The metallic nanoparticles were prepared by reduction of tetrachloroauric acid with sodium borohydride and colloidally stabilised with 11-mercaptoundecanoic acid. They were characterised by UV–Vis and fluorescence spectroscopy, showing a large Stokes shift of about 370 nm with excitation maxima at 250/270 nm and emission maxima at 620/640 nm for gold and silver/gold nanoparticles, respectively. The labelled PLGA nanoparticles (140 nm) were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV–Vis and fluorescence spectroscopy. Their uptake by HeLa cells was followed by confocal laser scanning microscopy. The metallic nanoparticles remained inside the PLGA particle after cellular uptake, demonstrating the efficient encapsulation and the applicability to label the polymer nanoparticle. In terms of fluorescence, the metallic nanoparticles were comparable to fluorescein isothiocyanate (FITC). More... »

PAGES

117

References to SciGraph publications

  • 2012-06-04. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes in JOURNAL OF NANOPARTICLE RESEARCH
  • 2008-11-26. Green fluorescent protein based pH indicators for in vivo use: a review in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2008-05-13. Body distribution of poly(d,l-lactide-co-glycolide) copolymer degradation products in rats in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 2010-07-03. Luminescent Quantum Clusters of Gold as Bio-Labels in ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY II
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10856-020-06449-8

    DOI

    http://dx.doi.org/10.1007/s10856-020-06449-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1132982573

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33247365


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biomedical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Carriers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Delivery Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gold", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "HeLa Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metal Nanoparticles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Particle Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polylactic Acid-Polyglycolic Acid Copolymer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silver", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Staining and Labeling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Toxicity Tests", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wey", 
            "givenName": "Karolin", 
            "id": "sg:person.01203125127.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203125127.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Epple", 
            "givenName": "Matthias", 
            "id": "sg:person.011342402346.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-04701-5_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051694392", 
              "https://doi.org/10.1007/978-3-642-04701-5_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10856-008-3460-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019032235", 
              "https://doi.org/10.1007/s10856-008-3460-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-008-2515-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021191003", 
              "https://doi.org/10.1007/s00216-008-2515-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-012-0910-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034095838", 
              "https://doi.org/10.1007/s11051-012-0910-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-11-28", 
        "datePublishedReg": "2020-11-28", 
        "description": "Ultrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in-water emulsion-evaporation method was developed to load poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles with autofluorescent ultrasmall gold and silver/gold nanoparticles (diameter 2\u2009nm). The metallic nanoparticles were prepared by reduction of tetrachloroauric acid with sodium borohydride and colloidally stabilised with 11-mercaptoundecanoic acid. They were characterised by UV\u2013Vis and fluorescence spectroscopy, showing a large Stokes shift of about 370\u2009nm with excitation maxima at 250/270\u2009nm and emission maxima at 620/640\u2009nm for gold and silver/gold nanoparticles, respectively. The labelled PLGA nanoparticles (140\u2009nm) were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV\u2013Vis and fluorescence spectroscopy. Their uptake by HeLa cells was followed by confocal laser scanning microscopy. The metallic nanoparticles remained inside the PLGA particle after cellular uptake, demonstrating the efficient encapsulation and the applicability to label the polymer nanoparticle. In terms of fluorescence, the metallic nanoparticles were comparable to fluorescein isothiocyanate (FITC).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10856-020-06449-8", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1100668", 
            "issn": [
              "0957-4530", 
              "1573-4838"
            ], 
            "name": "Journal of Materials Science: Materials in Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "silver/gold nanoparticles", 
          "metallic nanoparticles", 
          "gold nanoparticles", 
          "dynamic light scattering", 
          "ultrasmall gold", 
          "polymer nanoparticles", 
          "ultrasmall metallic nanoparticles", 
          "fluorescence spectroscopy", 
          "water emulsion evaporation method", 
          "emulsion evaporation method", 
          "large Stokes shift", 
          "tetrachloroauric acid", 
          "terms of fluorescence", 
          "PLGA nanoparticles", 
          "nanoparticles", 
          "versatile water", 
          "drug delivery", 
          "sodium borohydride", 
          "PLGA particles", 
          "electron microscopy", 
          "efficient encapsulation", 
          "Stokes shift", 
          "cellular uptake", 
          "emission maximum", 
          "light scattering", 
          "UV region", 
          "fluorescent labels", 
          "fluorescein isothiocyanate", 
          "confocal laser scanning microscopy", 
          "gold", 
          "spectroscopy", 
          "excitation maximum", 
          "laser scanning microscopy", 
          "microscopy", 
          "scanning microscopy", 
          "acid", 
          "borohydride", 
          "HeLa cells", 
          "encapsulation", 
          "low degree", 
          "fluorescence", 
          "delivery", 
          "water", 
          "isothiocyanate", 
          "particles", 
          "oil", 
          "autofluorescence", 
          "uptake", 
          "scattering", 
          "bleaching", 
          "maximum", 
          "excitation", 
          "shift", 
          "applicability", 
          "method", 
          "reduction", 
          "cells", 
          "labels", 
          "autofluorescent", 
          "degree", 
          "terms", 
          "region"
        ], 
        "name": "Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm)", 
        "pagination": "117", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1132982573"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10856-020-06449-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33247365"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10856-020-06449-8", 
          "https://app.dimensions.ai/details/publication/pub.1132982573"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_869.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10856-020-06449-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10856-020-06449-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10856-020-06449-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10856-020-06449-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10856-020-06449-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    202 TRIPLES      21 PREDICATES      105 URIs      92 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10856-020-06449-8 schema:about N0ce20f1dc3df47f29a4830cbd6808ae9
    2 N1dad0447c088443ba9e5b027ff20c58b
    3 N3700b8b0bfd647e3b4ba415157413f5a
    4 N3d55a2aef80f45459fb30596e4853d48
    5 N4f4db719a35a47beba05fbc04b156e69
    6 N4f50b14d2a4e4e2e92337279853f5da8
    7 N63838882c81843f6aa2ba4f993d54a90
    8 N659439e72bd54a1cafca0a325d4145a1
    9 N68950f6ebcf84bae8b3deb756e69a81f
    10 N7353e7cccff64217a384d9dd27fcaac8
    11 N8b0abb50994f45ba8dac3a49d8106f78
    12 Nebaf972e181643b280c9ec7ec9d4f5a0
    13 Nfd54288f2e6e4dafb06c9de7f7e356f9
    14 anzsrc-for:09
    15 anzsrc-for:0903
    16 anzsrc-for:0912
    17 schema:author Ne10c69b9a560487596e3e4cdd11a9fec
    18 schema:citation sg:pub.10.1007/978-3-642-04701-5_11
    19 sg:pub.10.1007/s00216-008-2515-9
    20 sg:pub.10.1007/s10856-008-3460-z
    21 sg:pub.10.1007/s11051-012-0910-9
    22 schema:datePublished 2020-11-28
    23 schema:datePublishedReg 2020-11-28
    24 schema:description Ultrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in-water emulsion-evaporation method was developed to load poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles with autofluorescent ultrasmall gold and silver/gold nanoparticles (diameter 2 nm). The metallic nanoparticles were prepared by reduction of tetrachloroauric acid with sodium borohydride and colloidally stabilised with 11-mercaptoundecanoic acid. They were characterised by UV–Vis and fluorescence spectroscopy, showing a large Stokes shift of about 370 nm with excitation maxima at 250/270 nm and emission maxima at 620/640 nm for gold and silver/gold nanoparticles, respectively. The labelled PLGA nanoparticles (140 nm) were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV–Vis and fluorescence spectroscopy. Their uptake by HeLa cells was followed by confocal laser scanning microscopy. The metallic nanoparticles remained inside the PLGA particle after cellular uptake, demonstrating the efficient encapsulation and the applicability to label the polymer nanoparticle. In terms of fluorescence, the metallic nanoparticles were comparable to fluorescein isothiocyanate (FITC).
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf Nab37b374d0ce4b2d84c57295f6a569a7
    28 Nd89640c315454b9e9f62417de8e070b8
    29 sg:journal.1100668
    30 schema:keywords HeLa cells
    31 PLGA nanoparticles
    32 PLGA particles
    33 Stokes shift
    34 UV region
    35 acid
    36 applicability
    37 autofluorescence
    38 autofluorescent
    39 bleaching
    40 borohydride
    41 cells
    42 cellular uptake
    43 confocal laser scanning microscopy
    44 degree
    45 delivery
    46 drug delivery
    47 dynamic light scattering
    48 efficient encapsulation
    49 electron microscopy
    50 emission maximum
    51 emulsion evaporation method
    52 encapsulation
    53 excitation
    54 excitation maximum
    55 fluorescein isothiocyanate
    56 fluorescence
    57 fluorescence spectroscopy
    58 fluorescent labels
    59 gold
    60 gold nanoparticles
    61 isothiocyanate
    62 labels
    63 large Stokes shift
    64 laser scanning microscopy
    65 light scattering
    66 low degree
    67 maximum
    68 metallic nanoparticles
    69 method
    70 microscopy
    71 nanoparticles
    72 oil
    73 particles
    74 polymer nanoparticles
    75 reduction
    76 region
    77 scanning microscopy
    78 scattering
    79 shift
    80 silver/gold nanoparticles
    81 sodium borohydride
    82 spectroscopy
    83 terms
    84 terms of fluorescence
    85 tetrachloroauric acid
    86 ultrasmall gold
    87 ultrasmall metallic nanoparticles
    88 uptake
    89 versatile water
    90 water
    91 water emulsion evaporation method
    92 schema:name Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm)
    93 schema:pagination 117
    94 schema:productId N5aeb178284834cb9a64a06ac999a359b
    95 N822aed2183e943eda7afb48aa5ae987f
    96 Nc11d54394cd940d7a73e93a735c0f16d
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132982573
    98 https://doi.org/10.1007/s10856-020-06449-8
    99 schema:sdDatePublished 2022-10-01T06:48
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N5c98ca138ee8411db1f0f53aeaed56ed
    102 schema:url https://doi.org/10.1007/s10856-020-06449-8
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N0ce20f1dc3df47f29a4830cbd6808ae9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Gold
    108 rdf:type schema:DefinedTerm
    109 N1dad0447c088443ba9e5b027ff20c58b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Spectrometry, Fluorescence
    111 rdf:type schema:DefinedTerm
    112 N3700b8b0bfd647e3b4ba415157413f5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Staining and Labeling
    114 rdf:type schema:DefinedTerm
    115 N3d55a2aef80f45459fb30596e4853d48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Silver
    117 rdf:type schema:DefinedTerm
    118 N4f4db719a35a47beba05fbc04b156e69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Particle Size
    120 rdf:type schema:DefinedTerm
    121 N4f50b14d2a4e4e2e92337279853f5da8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Humans
    123 rdf:type schema:DefinedTerm
    124 N5aeb178284834cb9a64a06ac999a359b schema:name doi
    125 schema:value 10.1007/s10856-020-06449-8
    126 rdf:type schema:PropertyValue
    127 N5c98ca138ee8411db1f0f53aeaed56ed schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 N63838882c81843f6aa2ba4f993d54a90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Toxicity Tests
    131 rdf:type schema:DefinedTerm
    132 N659439e72bd54a1cafca0a325d4145a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Metal Nanoparticles
    134 rdf:type schema:DefinedTerm
    135 N68950f6ebcf84bae8b3deb756e69a81f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name HeLa Cells
    137 rdf:type schema:DefinedTerm
    138 N7353e7cccff64217a384d9dd27fcaac8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Materials Testing
    140 rdf:type schema:DefinedTerm
    141 N81c6d818bee942e890dca6e4494ab363 rdf:first sg:person.011342402346.80
    142 rdf:rest rdf:nil
    143 N822aed2183e943eda7afb48aa5ae987f schema:name dimensions_id
    144 schema:value pub.1132982573
    145 rdf:type schema:PropertyValue
    146 N8b0abb50994f45ba8dac3a49d8106f78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Drug Carriers
    148 rdf:type schema:DefinedTerm
    149 Nab37b374d0ce4b2d84c57295f6a569a7 schema:volumeNumber 31
    150 rdf:type schema:PublicationVolume
    151 Nc11d54394cd940d7a73e93a735c0f16d schema:name pubmed_id
    152 schema:value 33247365
    153 rdf:type schema:PropertyValue
    154 Nd89640c315454b9e9f62417de8e070b8 schema:issueNumber 12
    155 rdf:type schema:PublicationIssue
    156 Ne10c69b9a560487596e3e4cdd11a9fec rdf:first sg:person.01203125127.18
    157 rdf:rest N81c6d818bee942e890dca6e4494ab363
    158 Nebaf972e181643b280c9ec7ec9d4f5a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Polylactic Acid-Polyglycolic Acid Copolymer
    160 rdf:type schema:DefinedTerm
    161 Nfd54288f2e6e4dafb06c9de7f7e356f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Drug Delivery Systems
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Engineering
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Biomedical Engineering
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Materials Engineering
    172 rdf:type schema:DefinedTerm
    173 sg:journal.1100668 schema:issn 0957-4530
    174 1573-4838
    175 schema:name Journal of Materials Science: Materials in Medicine
    176 schema:publisher Springer Nature
    177 rdf:type schema:Periodical
    178 sg:person.011342402346.80 schema:affiliation grid-institutes:grid.5718.b
    179 schema:familyName Epple
    180 schema:givenName Matthias
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80
    182 rdf:type schema:Person
    183 sg:person.01203125127.18 schema:affiliation grid-institutes:grid.5718.b
    184 schema:familyName Wey
    185 schema:givenName Karolin
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203125127.18
    187 rdf:type schema:Person
    188 sg:pub.10.1007/978-3-642-04701-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051694392
    189 https://doi.org/10.1007/978-3-642-04701-5_11
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00216-008-2515-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021191003
    192 https://doi.org/10.1007/s00216-008-2515-9
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10856-008-3460-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019032235
    195 https://doi.org/10.1007/s10856-008-3460-z
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s11051-012-0910-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034095838
    198 https://doi.org/10.1007/s11051-012-0910-9
    199 rdf:type schema:CreativeWork
    200 grid-institutes:grid.5718.b schema:alternateName Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
    201 schema:name Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
    202 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...