3D-porous β-tricalcium phosphate–alginate–gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Shahrbanoo Jahangir, Samaneh Hosseini, Farhad Mostafaei, Forough Azam Sayahpour, Mohamadreza Baghaban Eslaminejad

ABSTRACT

Hypoxia-inducible factor-1α (HIF-1α), a well-studied angiogenesis pathway, plays an essential role in angiogenesis-osteogenesis coupling. Targeting the HIF-1a pathway frequently leads to successful reconstruction of large-sized bone defects through promotion of angiogenesis. Dimethyloxalylglycine (DMOG) small molecule regulates the stability of HIF-1α at normal oxygen tension by mimicking hypoxia, which subsequently accelerates angiogenesis. The current study aims to develop a novel construct by seeding adipose derived mesenchymal stem cells (ADMSCs) onto a scaffold that contains DMOG to induce angiogenesis and regeneration of a critical size calvarial defect in a rat model. The spongy scaffolds have been synthesized in the presence and absence of DMOG and analyzed in terms of morphology, porosity, pore size, mechanical properties and DMOG release profile. The effect of DMOG delivery on cellular behaviors of adhesion, viability, osteogenic differentiation, and angiogenesis were subsequently evaluated under in vitro conditions. Histological analysis of cell-scaffold constructs were also performed following transplantation into the calvarial defect. Physical characteristics of fabricated scaffolds confirmed higher mechanical strength and surface roughness of DMOG-loaded scaffolds. Scanning electron microscopy (SEM) images and MTT assay demonstrated the attachment and viability of ADMSCs in the presence of DMOG, respectively. Osteogenic activity of ADMSCs that included alkaline phosphatase (ALP) activity and calcium deposition significantly increased in the DMOG-loaded scaffold. Computed tomography (CT) imaging combined with histomorphometry and immunohistochemistry analysis showed enhanced bone formation and angiogenesis in the DMOG-loaded scaffolds. Therefore, spongy scaffolds that contained DMOG and had angiogenesis ability could be utilized to enhance bone regeneration of large-sized bone defects. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10856-018-6202-x

DOI

http://dx.doi.org/10.1007/s10856-018-6202-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110755855

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30564959


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Iran University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.411746.1", 
          "name": [
            "Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911, Tehran, Iran", 
            "Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jahangir", 
        "givenName": "Shahrbanoo", 
        "id": "sg:person.01022121727.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022121727.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royan Institute", 
          "id": "https://www.grid.ac/institutes/grid.419336.a", 
          "name": [
            "Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hosseini", 
        "givenName": "Samaneh", 
        "id": "sg:person.015466351311.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015466351311.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academic Center for Education, Culture and Research", 
          "id": "https://www.grid.ac/institutes/grid.417689.5", 
          "name": [
            "Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 1665659911, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mostafaei", 
        "givenName": "Farhad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royan Institute", 
          "id": "https://www.grid.ac/institutes/grid.419336.a", 
          "name": [
            "Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sayahpour", 
        "givenName": "Forough Azam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royan Institute", 
          "id": "https://www.grid.ac/institutes/grid.419336.a", 
          "name": [
            "Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baghaban Eslaminejad", 
        "givenName": "Mohamadreza", 
        "id": "sg:person.01171611221.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171611221.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cell.2006.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002736945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-009-3692-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003389067", 
          "https://doi.org/10.1007/s10856-009-3692-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-009-3692-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003389067", 
          "https://doi.org/10.1007/s10856-009-3692-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-894x(03)00539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004748802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-894x(03)00539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004748802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2009.05238.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004778481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2009.05238.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004778481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1402.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009009623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1359/jbmr.060120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010810629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012004123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012004123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1059796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016442685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2302/kjm.54.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016547538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017666327", 
          "https://doi.org/10.1038/nrc3183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2014.01.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018979964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/term.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019486351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/scd.2013.0486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024637014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msec.2016.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024950237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/812693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028549868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m110.132985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028554579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.archoralbio.2014.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030595209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-006-9173-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031034352", 
          "https://doi.org/10.1007/s11095-006-9173-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2004.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034046429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/cdg392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036196194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1582-4934.2010.01224.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036707502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2014.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039482650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041261140", 
          "https://doi.org/10.1038/nrc3064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-007-0400-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041482018", 
          "https://doi.org/10.1007/s00424-007-0400-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-007-0400-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041482018", 
          "https://doi.org/10.1007/s00424-007-0400-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5bm00132c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041588578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/239356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042167766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/stem.2296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042392275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0911921106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043648111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2008.09.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043924294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2013.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044170101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2006.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044170286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0112744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044881606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7799(98)01191-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046443572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00109-009-0477-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046905112", 
          "https://doi.org/10.1007/s00109-009-0477-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00109-009-0477-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046905112", 
          "https://doi.org/10.1007/s00109-009-0477-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00109-009-0477-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046905112", 
          "https://doi.org/10.1007/s00109-009-0477-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049846724", 
          "https://doi.org/10.1038/nm1075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049846724", 
          "https://doi.org/10.1038/nm1075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051692719", 
          "https://doi.org/10.1038/nature13145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0499-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056527569", 
          "https://doi.org/10.1038/scientificamerican0499-60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/104303403322611719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059202585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/teb.2007.0299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059312945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.2006.0102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059313517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.2006.0141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059313540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.tea.2010.0338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059315676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.tea.2014.0267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059316626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-199404000-00020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060165631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-199404000-00020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060165631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-199404000-00020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060165631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/157488808786733962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069215724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5435/00124635-200501000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072859036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep42820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083860058", 
          "https://doi.org/10.1038/srep42820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000469704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086153845"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Hypoxia-inducible factor-1\u03b1 (HIF-1\u03b1), a well-studied angiogenesis pathway, plays an essential role in angiogenesis-osteogenesis coupling. Targeting the HIF-1a pathway frequently leads to successful reconstruction of large-sized bone defects through promotion of angiogenesis. Dimethyloxalylglycine (DMOG) small molecule regulates the stability of HIF-1\u03b1 at normal oxygen tension by mimicking hypoxia, which subsequently accelerates angiogenesis. The current study aims to develop a novel construct by seeding adipose derived mesenchymal stem cells (ADMSCs) onto a scaffold that contains DMOG to induce angiogenesis and regeneration of a critical size calvarial defect in a rat model. The spongy scaffolds have been synthesized in the presence and absence of DMOG and analyzed in terms of morphology, porosity, pore size, mechanical properties and DMOG release profile. The effect of DMOG delivery on cellular behaviors of adhesion, viability, osteogenic differentiation, and angiogenesis were subsequently evaluated under in vitro conditions. Histological analysis of cell-scaffold constructs were also performed following transplantation into the calvarial defect. Physical characteristics of fabricated scaffolds confirmed higher mechanical strength and surface roughness of DMOG-loaded scaffolds. Scanning electron microscopy (SEM) images and MTT assay demonstrated the attachment and viability of ADMSCs in the presence of DMOG, respectively. Osteogenic activity of ADMSCs that included alkaline phosphatase (ALP) activity and calcium deposition significantly increased in the DMOG-loaded scaffold. Computed tomography (CT) imaging combined with histomorphometry and immunohistochemistry analysis showed enhanced bone formation and angiogenesis in the DMOG-loaded scaffolds. Therefore, spongy scaffolds that contained DMOG and had angiogenesis ability could be utilized to enhance bone regeneration of large-sized bone defects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10856-018-6202-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1100668", 
        "issn": [
          "0957-4530", 
          "1573-4838"
        ], 
        "name": "Journal of Materials Science: Materials in Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "3D-porous \u03b2-tricalcium phosphate\u2013alginate\u2013gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d05ba688df725687270fdbc7e04c5e79654297dacc65023df2a0e66471199c98"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30564959"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9013087"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10856-018-6202-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110755855"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10856-018-6202-x", 
      "https://app.dimensions.ai/details/publication/pub.1110755855"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106286_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10856-018-6202-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10856-018-6202-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10856-018-6202-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10856-018-6202-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10856-018-6202-x'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10856-018-6202-x schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N781dd30130b94a4faa4814b47c8bb0c5
4 schema:citation sg:pub.10.1007/s00109-009-0477-9
5 sg:pub.10.1007/s00424-007-0400-6
6 sg:pub.10.1007/s10856-009-3692-6
7 sg:pub.10.1007/s11095-006-9173-4
8 sg:pub.10.1038/nature13145
9 sg:pub.10.1038/nm1075
10 sg:pub.10.1038/nrc3064
11 sg:pub.10.1038/nrc3183
12 sg:pub.10.1038/scientificamerican0499-60
13 sg:pub.10.1038/srep42820
14 https://doi.org/10.1002/path.1778
15 https://doi.org/10.1002/stem.2296
16 https://doi.org/10.1002/term.49
17 https://doi.org/10.1016/j.actbio.2013.06.026
18 https://doi.org/10.1016/j.actbio.2014.07.002
19 https://doi.org/10.1016/j.archoralbio.2014.05.027
20 https://doi.org/10.1016/j.biomaterials.2006.01.033
21 https://doi.org/10.1016/j.biomaterials.2008.09.047
22 https://doi.org/10.1016/j.biomaterials.2014.01.063
23 https://doi.org/10.1016/j.cell.2006.06.044
24 https://doi.org/10.1016/j.freeradbiomed.2004.12.004
25 https://doi.org/10.1016/j.msec.2016.07.011
26 https://doi.org/10.1016/s0167-7799(98)01191-3
27 https://doi.org/10.1016/s0960-894x(03)00539-0
28 https://doi.org/10.1039/c5bm00132c
29 https://doi.org/10.1073/pnas.0911921106
30 https://doi.org/10.1074/jbc.m110.132985
31 https://doi.org/10.1089/104303403322611719
32 https://doi.org/10.1089/scd.2013.0486
33 https://doi.org/10.1089/teb.2007.0299
34 https://doi.org/10.1089/ten.2006.0102
35 https://doi.org/10.1089/ten.2006.0141
36 https://doi.org/10.1089/ten.tea.2010.0338
37 https://doi.org/10.1089/ten.tea.2014.0267
38 https://doi.org/10.1093/emboj/cdg392
39 https://doi.org/10.1097/00003086-199404000-00020
40 https://doi.org/10.1111/j.1582-4934.2010.01224.x
41 https://doi.org/10.1111/j.1749-6632.2009.05238.x
42 https://doi.org/10.1126/science.1059796
43 https://doi.org/10.1155/2012/812693
44 https://doi.org/10.1155/2014/239356
45 https://doi.org/10.1159/000469704
46 https://doi.org/10.1196/annals.1402.049
47 https://doi.org/10.1359/jbmr.060120
48 https://doi.org/10.1371/journal.pone.0112744
49 https://doi.org/10.2174/157488808786733962
50 https://doi.org/10.2302/kjm.54.132
51 https://doi.org/10.5435/00124635-200501000-00010
52 schema:datePublished 2019-01
53 schema:datePublishedReg 2019-01-01
54 schema:description Hypoxia-inducible factor-1α (HIF-1α), a well-studied angiogenesis pathway, plays an essential role in angiogenesis-osteogenesis coupling. Targeting the HIF-1a pathway frequently leads to successful reconstruction of large-sized bone defects through promotion of angiogenesis. Dimethyloxalylglycine (DMOG) small molecule regulates the stability of HIF-1α at normal oxygen tension by mimicking hypoxia, which subsequently accelerates angiogenesis. The current study aims to develop a novel construct by seeding adipose derived mesenchymal stem cells (ADMSCs) onto a scaffold that contains DMOG to induce angiogenesis and regeneration of a critical size calvarial defect in a rat model. The spongy scaffolds have been synthesized in the presence and absence of DMOG and analyzed in terms of morphology, porosity, pore size, mechanical properties and DMOG release profile. The effect of DMOG delivery on cellular behaviors of adhesion, viability, osteogenic differentiation, and angiogenesis were subsequently evaluated under in vitro conditions. Histological analysis of cell-scaffold constructs were also performed following transplantation into the calvarial defect. Physical characteristics of fabricated scaffolds confirmed higher mechanical strength and surface roughness of DMOG-loaded scaffolds. Scanning electron microscopy (SEM) images and MTT assay demonstrated the attachment and viability of ADMSCs in the presence of DMOG, respectively. Osteogenic activity of ADMSCs that included alkaline phosphatase (ALP) activity and calcium deposition significantly increased in the DMOG-loaded scaffold. Computed tomography (CT) imaging combined with histomorphometry and immunohistochemistry analysis showed enhanced bone formation and angiogenesis in the DMOG-loaded scaffolds. Therefore, spongy scaffolds that contained DMOG and had angiogenesis ability could be utilized to enhance bone regeneration of large-sized bone defects.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf Na3e732393f064a8586facc6b9846d4c3
59 Nd2c7cccf42bd4f489e2ac686e3e8f86d
60 sg:journal.1100668
61 schema:name 3D-porous β-tricalcium phosphate–alginate–gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects
62 schema:pagination 1
63 schema:productId N11f92c1456404beab289eac0901a2672
64 N3098de30edd14bb7ad6ed8e7774263f7
65 N6646638d9de146da8e1b047abad3fe1a
66 N704ca00fc0d4433a8534637213266c73
67 Na4c130e8e5c443909a9f2865c71b0543
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110755855
69 https://doi.org/10.1007/s10856-018-6202-x
70 schema:sdDatePublished 2019-04-11T08:31
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N4944fa33b93842fe9f2e42e60059f337
73 schema:url https://link.springer.com/10.1007%2Fs10856-018-6202-x
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N11f92c1456404beab289eac0901a2672 schema:name pubmed_id
78 schema:value 30564959
79 rdf:type schema:PropertyValue
80 N2f37f256bd094e758200746c7f477b5e schema:affiliation https://www.grid.ac/institutes/grid.419336.a
81 schema:familyName Sayahpour
82 schema:givenName Forough Azam
83 rdf:type schema:Person
84 N3098de30edd14bb7ad6ed8e7774263f7 schema:name readcube_id
85 schema:value d05ba688df725687270fdbc7e04c5e79654297dacc65023df2a0e66471199c98
86 rdf:type schema:PropertyValue
87 N41be5c0a370441dd9c90e74ba2ff4ac8 schema:affiliation https://www.grid.ac/institutes/grid.417689.5
88 schema:familyName Mostafaei
89 schema:givenName Farhad
90 rdf:type schema:Person
91 N48d787eab9b14e4080063cc210fb90a2 rdf:first sg:person.01171611221.89
92 rdf:rest rdf:nil
93 N4944fa33b93842fe9f2e42e60059f337 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N5608ffe10ca84afbb682ae6e92ab2232 rdf:first N41be5c0a370441dd9c90e74ba2ff4ac8
96 rdf:rest N7535600ff60e4a65ab86191c17b42f06
97 N6646638d9de146da8e1b047abad3fe1a schema:name nlm_unique_id
98 schema:value 9013087
99 rdf:type schema:PropertyValue
100 N704ca00fc0d4433a8534637213266c73 schema:name doi
101 schema:value 10.1007/s10856-018-6202-x
102 rdf:type schema:PropertyValue
103 N7535600ff60e4a65ab86191c17b42f06 rdf:first N2f37f256bd094e758200746c7f477b5e
104 rdf:rest N48d787eab9b14e4080063cc210fb90a2
105 N781dd30130b94a4faa4814b47c8bb0c5 rdf:first sg:person.01022121727.53
106 rdf:rest Ne12e436c696f4eb0916ae5b87787f09f
107 Na3e732393f064a8586facc6b9846d4c3 schema:volumeNumber 30
108 rdf:type schema:PublicationVolume
109 Na4c130e8e5c443909a9f2865c71b0543 schema:name dimensions_id
110 schema:value pub.1110755855
111 rdf:type schema:PropertyValue
112 Nd2c7cccf42bd4f489e2ac686e3e8f86d schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 Ne12e436c696f4eb0916ae5b87787f09f rdf:first sg:person.015466351311.79
115 rdf:rest N5608ffe10ca84afbb682ae6e92ab2232
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
120 schema:name Biomedical Engineering
121 rdf:type schema:DefinedTerm
122 sg:journal.1100668 schema:issn 0957-4530
123 1573-4838
124 schema:name Journal of Materials Science: Materials in Medicine
125 rdf:type schema:Periodical
126 sg:person.01022121727.53 schema:affiliation https://www.grid.ac/institutes/grid.411746.1
127 schema:familyName Jahangir
128 schema:givenName Shahrbanoo
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022121727.53
130 rdf:type schema:Person
131 sg:person.01171611221.89 schema:affiliation https://www.grid.ac/institutes/grid.419336.a
132 schema:familyName Baghaban Eslaminejad
133 schema:givenName Mohamadreza
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171611221.89
135 rdf:type schema:Person
136 sg:person.015466351311.79 schema:affiliation https://www.grid.ac/institutes/grid.419336.a
137 schema:familyName Hosseini
138 schema:givenName Samaneh
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015466351311.79
140 rdf:type schema:Person
141 sg:pub.10.1007/s00109-009-0477-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046905112
142 https://doi.org/10.1007/s00109-009-0477-9
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00424-007-0400-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041482018
145 https://doi.org/10.1007/s00424-007-0400-6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10856-009-3692-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003389067
148 https://doi.org/10.1007/s10856-009-3692-6
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11095-006-9173-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031034352
151 https://doi.org/10.1007/s11095-006-9173-4
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature13145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051692719
154 https://doi.org/10.1038/nature13145
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nm1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049846724
157 https://doi.org/10.1038/nm1075
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nrc3064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041261140
160 https://doi.org/10.1038/nrc3064
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nrc3183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017666327
163 https://doi.org/10.1038/nrc3183
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/scientificamerican0499-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056527569
166 https://doi.org/10.1038/scientificamerican0499-60
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/srep42820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083860058
169 https://doi.org/10.1038/srep42820
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/path.1778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012004123
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/stem.2296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042392275
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/term.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019486351
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.actbio.2013.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044170101
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.actbio.2014.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039482650
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.archoralbio.2014.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030595209
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.biomaterials.2006.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044170286
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.biomaterials.2008.09.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043924294
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.biomaterials.2014.01.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018979964
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.cell.2006.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002736945
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.freeradbiomed.2004.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034046429
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.msec.2016.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024950237
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0167-7799(98)01191-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046443572
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0960-894x(03)00539-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004748802
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1039/c5bm00132c schema:sameAs https://app.dimensions.ai/details/publication/pub.1041588578
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.0911921106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043648111
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1074/jbc.m110.132985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028554579
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1089/104303403322611719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059202585
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1089/scd.2013.0486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024637014
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1089/teb.2007.0299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059312945
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1089/ten.2006.0102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059313517
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1089/ten.2006.0141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059313540
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1089/ten.tea.2010.0338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059315676
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1089/ten.tea.2014.0267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059316626
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/emboj/cdg392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036196194
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1097/00003086-199404000-00020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060165631
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/j.1582-4934.2010.01224.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036707502
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/j.1749-6632.2009.05238.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004778481
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1126/science.1059796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016442685
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1155/2012/812693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028549868
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1155/2014/239356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042167766
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1159/000469704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086153845
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1196/annals.1402.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009009623
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1359/jbmr.060120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010810629
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1371/journal.pone.0112744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044881606
240 rdf:type schema:CreativeWork
241 https://doi.org/10.2174/157488808786733962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069215724
242 rdf:type schema:CreativeWork
243 https://doi.org/10.2302/kjm.54.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016547538
244 rdf:type schema:CreativeWork
245 https://doi.org/10.5435/00124635-200501000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072859036
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.411746.1 schema:alternateName Iran University of Medical Sciences
248 schema:name Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911, Tehran, Iran
249 Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.417689.5 schema:alternateName Academic Center for Education, Culture and Research
252 schema:name Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 1665659911, Tehran, Iran
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.419336.a schema:alternateName Royan Institute
255 schema:name Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911, Tehran, Iran
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...