Silicon-substituted hydroxyapatite composite coating by using vacuum-plasma spraying and its interaction with human serum albumin View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03-20

AUTHORS

Feng-juan Xiao, Lei Peng, Ying Zhang, Li-jiang Yun

ABSTRACT

The incorporation of silicon can improve the bioactivity of hydroxyapatite (HA). Silicon-substituted HA (Ca10(PO4)6−x(SiO4)x(OH)2−x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by using a vacuum-plasma spraying method. The surface structure was characterized by using XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated and XRD patterns showed that Ti/Si-HA coatings were similar to patterns seen for HA. The only different XRD pattern was a slight trend toward a smaller angle direction with an increase in the molar ratio of silicon. FTIR spectra showed that the most notable effect of silicon substitution was that –OH group decreased as the silicon content increased. XRD and EDS elemental analysis indicated that the content of silicon in the coating was consistent with the silicon-substituted hydroxyapatite used in spraying. A bioactive TiO2 coating was formed on an etched surface of Ti, and the etching might improve the bond strength of the coatings. The interaction of the Ti/Si-HA coating with human serum albumin (HSA) was much greater than that of the Ti/HA coating. This might suggest that the incorporation of silicon in HA can lead to significant improvements in the bioactive performance of HA. More... »

PAGES

1653-1658

References to SciGraph publications

  • 1997-04. Electrophoretic deposition of hydroxyapatite in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 1998-01. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants in JOURNAL OF MATERIALS RESEARCH
  • 1999-07. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 2001-06. Apatite-Silica Gel Composite Materials Prepared by a New Alternate Soaking Process in JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10856-009-3723-3

    DOI

    http://dx.doi.org/10.1007/s10856-009-3723-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028129556

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19301103


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adhesiveness", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coated Materials, Biocompatible", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Durapatite", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metallurgy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Electron, Scanning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Serum Albumin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silicon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectroscopy, Fourier Transform Infrared", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vacuum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "X-Ray Diffraction", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Feng-juan", 
            "id": "sg:person.01126515620.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126515620.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Lei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ying", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yun", 
            "givenName": "Li-jiang", 
            "id": "sg:person.01267442434.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267442434.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1011205515560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025112371", 
              "https://doi.org/10.1023/a:1011205515560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008923029945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006650791", 
              "https://doi.org/10.1023/a:1008923029945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018587623231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048829343", 
              "https://doi.org/10.1023/a:1018587623231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1998.0015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039886539", 
              "https://doi.org/10.1557/jmr.1998.0015"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-03-20", 
        "datePublishedReg": "2009-03-20", 
        "description": "The incorporation of silicon can improve the bioactivity of hydroxyapatite (HA). Silicon-substituted HA (Ca10(PO4)6\u2212x(SiO4)x(OH)2\u2212x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by using a vacuum-plasma spraying method. The surface structure was characterized by using XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated and XRD patterns showed that Ti/Si-HA coatings were similar to patterns seen for HA. The only different XRD pattern was a slight trend toward a smaller angle direction with an increase in the molar ratio of silicon. FTIR spectra showed that the most notable effect of silicon substitution was that \u2013OH group decreased as the silicon content increased. XRD and EDS elemental analysis indicated that the content of silicon in the coating was consistent with the silicon-substituted hydroxyapatite used in spraying. A bioactive TiO2 coating was formed on an etched surface of Ti, and the etching might improve the bond strength of the coatings. The interaction of the Ti/Si-HA coating with human serum albumin (HSA) was much greater than that of the Ti/HA coating. This might suggest that the incorporation of silicon in HA can lead to significant improvements in the bioactive performance of HA.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10856-009-3723-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1100668", 
            "issn": [
              "0957-4530", 
              "1573-4838"
            ], 
            "name": "Journal of Materials Science: Materials in Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "Si-HA coatings", 
          "incorporation of silicon", 
          "composite coatings", 
          "hydroxyapatite composite coatings", 
          "Vacuum Plasma Spraying", 
          "HA composite coating", 
          "bond strength", 
          "silicon-substituted hydroxyapatite", 
          "bioactivity of hydroxyapatite", 
          "content of silicon", 
          "XRD patterns", 
          "EDS elemental analysis", 
          "TiO2 coatings", 
          "titanium substrate", 
          "spraying method", 
          "HA coating", 
          "bioactive performance", 
          "silicon content", 
          "coatings", 
          "etched surfaces", 
          "silicon", 
          "surface structure", 
          "hydroxyapatite", 
          "silicon substitution", 
          "angle direction", 
          "XRD", 
          "different XRD patterns", 
          "FTIR spectra", 
          "strength", 
          "molar ratio", 
          "etching", 
          "EDS", 
          "notable effect", 
          "SEM", 
          "spraying", 
          "Ti", 
          "surface", 
          "substrate", 
          "FTIR", 
          "XRF", 
          "performance", 
          "incorporation", 
          "content", 
          "significant improvement", 
          "OH groups", 
          "structure", 
          "direction", 
          "ratio", 
          "method", 
          "bioactivity", 
          "elemental analysis", 
          "improvement", 
          "interaction", 
          "increase", 
          "effect", 
          "spectra", 
          "analysis", 
          "patterns", 
          "serum albumin", 
          "trends", 
          "substitution", 
          "slight trend", 
          "human serum albumin", 
          "albumin", 
          "group"
        ], 
        "name": "Silicon-substituted hydroxyapatite composite coating by using vacuum-plasma spraying and its interaction with human serum albumin", 
        "pagination": "1653-1658", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028129556"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10856-009-3723-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19301103"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10856-009-3723-3", 
          "https://app.dimensions.ai/details/publication/pub.1028129556"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_496.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10856-009-3723-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10856-009-3723-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10856-009-3723-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10856-009-3723-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10856-009-3723-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      107 URIs      95 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10856-009-3723-3 schema:about N0845f3c1ac3b4d3993cf2833fe325183
    2 N08aa4c1c3870467eb6704b43827ba5f1
    3 N11ac4acc2faf4c8f8336ca896d88611e
    4 N3a1b24ba5e4245f291f534c4a21e2718
    5 N526feb7e19a64af5b4b5440cda6e7262
    6 N53d9915d751e49619ce7cf2c0e2a2654
    7 N74a58455082c4989a2ffec80e272cc8a
    8 N956fd1213d744482a121b617f6ff89bd
    9 N9ee818b5d3ab4f689028d9d3deafd0e3
    10 Nb2e71480aaac49138055be5eea8b89da
    11 Nb61c01d789a84ec7bca07b62994a2b96
    12 Nb9fa802f1506477aaea0ecbddcec66f8
    13 Nc751a005bc014ad5980d0c9fa66ef220
    14 anzsrc-for:09
    15 anzsrc-for:0912
    16 schema:author N1879170cf4d84607b6efafabf36b5f5d
    17 schema:citation sg:pub.10.1023/a:1008923029945
    18 sg:pub.10.1023/a:1011205515560
    19 sg:pub.10.1023/a:1018587623231
    20 sg:pub.10.1557/jmr.1998.0015
    21 schema:datePublished 2009-03-20
    22 schema:datePublishedReg 2009-03-20
    23 schema:description The incorporation of silicon can improve the bioactivity of hydroxyapatite (HA). Silicon-substituted HA (Ca10(PO4)6−x(SiO4)x(OH)2−x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by using a vacuum-plasma spraying method. The surface structure was characterized by using XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated and XRD patterns showed that Ti/Si-HA coatings were similar to patterns seen for HA. The only different XRD pattern was a slight trend toward a smaller angle direction with an increase in the molar ratio of silicon. FTIR spectra showed that the most notable effect of silicon substitution was that –OH group decreased as the silicon content increased. XRD and EDS elemental analysis indicated that the content of silicon in the coating was consistent with the silicon-substituted hydroxyapatite used in spraying. A bioactive TiO2 coating was formed on an etched surface of Ti, and the etching might improve the bond strength of the coatings. The interaction of the Ti/Si-HA coating with human serum albumin (HSA) was much greater than that of the Ti/HA coating. This might suggest that the incorporation of silicon in HA can lead to significant improvements in the bioactive performance of HA.
    24 schema:genre article
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N63914d3102e042279c4b5f77a36a48ce
    27 Na05a47382a1847e281373615269c1699
    28 sg:journal.1100668
    29 schema:keywords EDS
    30 EDS elemental analysis
    31 FTIR
    32 FTIR spectra
    33 HA coating
    34 HA composite coating
    35 OH groups
    36 SEM
    37 Si-HA coatings
    38 Ti
    39 TiO2 coatings
    40 Vacuum Plasma Spraying
    41 XRD
    42 XRD patterns
    43 XRF
    44 albumin
    45 analysis
    46 angle direction
    47 bioactive performance
    48 bioactivity
    49 bioactivity of hydroxyapatite
    50 bond strength
    51 coatings
    52 composite coatings
    53 content
    54 content of silicon
    55 different XRD patterns
    56 direction
    57 effect
    58 elemental analysis
    59 etched surfaces
    60 etching
    61 group
    62 human serum albumin
    63 hydroxyapatite
    64 hydroxyapatite composite coatings
    65 improvement
    66 incorporation
    67 incorporation of silicon
    68 increase
    69 interaction
    70 method
    71 molar ratio
    72 notable effect
    73 patterns
    74 performance
    75 ratio
    76 serum albumin
    77 significant improvement
    78 silicon
    79 silicon content
    80 silicon substitution
    81 silicon-substituted hydroxyapatite
    82 slight trend
    83 spectra
    84 spraying
    85 spraying method
    86 strength
    87 structure
    88 substitution
    89 substrate
    90 surface
    91 surface structure
    92 titanium substrate
    93 trends
    94 schema:name Silicon-substituted hydroxyapatite composite coating by using vacuum-plasma spraying and its interaction with human serum albumin
    95 schema:pagination 1653-1658
    96 schema:productId N0727ce59e547469ea2b7bf3bf94ff944
    97 N380053e360384722abb995d3fd979a8b
    98 N8a336c6240d34081800f91998bf52f9f
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028129556
    100 https://doi.org/10.1007/s10856-009-3723-3
    101 schema:sdDatePublished 2022-11-24T20:53
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher N337f14f6e71547e7a114cd09f992e5b2
    104 schema:url https://doi.org/10.1007/s10856-009-3723-3
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N0727ce59e547469ea2b7bf3bf94ff944 schema:name pubmed_id
    109 schema:value 19301103
    110 rdf:type schema:PropertyValue
    111 N0845f3c1ac3b4d3993cf2833fe325183 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Microscopy, Electron, Scanning
    113 rdf:type schema:DefinedTerm
    114 N08aa4c1c3870467eb6704b43827ba5f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Durapatite
    116 rdf:type schema:DefinedTerm
    117 N11ac4acc2faf4c8f8336ca896d88611e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Serum Albumin
    119 rdf:type schema:DefinedTerm
    120 N12698765ef4e4d06939e8f950838363f schema:affiliation grid-institutes:None
    121 schema:familyName Zhang
    122 schema:givenName Ying
    123 rdf:type schema:Person
    124 N1879170cf4d84607b6efafabf36b5f5d rdf:first sg:person.01126515620.17
    125 rdf:rest Na7f8e7eeb47e4f75bc2792d759f3c53c
    126 N337f14f6e71547e7a114cd09f992e5b2 schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 N380053e360384722abb995d3fd979a8b schema:name dimensions_id
    129 schema:value pub.1028129556
    130 rdf:type schema:PropertyValue
    131 N3a1b24ba5e4245f291f534c4a21e2718 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Materials Testing
    133 rdf:type schema:DefinedTerm
    134 N5039e45a57b24cbb81866de0e9c83450 rdf:first N12698765ef4e4d06939e8f950838363f
    135 rdf:rest Nbdd0897a39f14e898a713eebb69ea55b
    136 N526feb7e19a64af5b4b5440cda6e7262 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Surface Properties
    138 rdf:type schema:DefinedTerm
    139 N53d9915d751e49619ce7cf2c0e2a2654 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Spectroscopy, Fourier Transform Infrared
    141 rdf:type schema:DefinedTerm
    142 N63914d3102e042279c4b5f77a36a48ce schema:issueNumber 8
    143 rdf:type schema:PublicationIssue
    144 N74a58455082c4989a2ffec80e272cc8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Metallurgy
    146 rdf:type schema:DefinedTerm
    147 N8a336c6240d34081800f91998bf52f9f schema:name doi
    148 schema:value 10.1007/s10856-009-3723-3
    149 rdf:type schema:PropertyValue
    150 N956fd1213d744482a121b617f6ff89bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Coated Materials, Biocompatible
    152 rdf:type schema:DefinedTerm
    153 N9ee818b5d3ab4f689028d9d3deafd0e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Silicon
    155 rdf:type schema:DefinedTerm
    156 Na05a47382a1847e281373615269c1699 schema:volumeNumber 20
    157 rdf:type schema:PublicationVolume
    158 Na7f8e7eeb47e4f75bc2792d759f3c53c rdf:first Nfa9d35feb59c4ca5a7dfc83dee8ba115
    159 rdf:rest N5039e45a57b24cbb81866de0e9c83450
    160 Nb2e71480aaac49138055be5eea8b89da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Adhesiveness
    162 rdf:type schema:DefinedTerm
    163 Nb61c01d789a84ec7bca07b62994a2b96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name X-Ray Diffraction
    165 rdf:type schema:DefinedTerm
    166 Nb9fa802f1506477aaea0ecbddcec66f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Vacuum
    168 rdf:type schema:DefinedTerm
    169 Nbdd0897a39f14e898a713eebb69ea55b rdf:first sg:person.01267442434.43
    170 rdf:rest rdf:nil
    171 Nc751a005bc014ad5980d0c9fa66ef220 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Humans
    173 rdf:type schema:DefinedTerm
    174 Nfa9d35feb59c4ca5a7dfc83dee8ba115 schema:affiliation grid-institutes:None
    175 schema:familyName Peng
    176 schema:givenName Lei
    177 rdf:type schema:Person
    178 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Engineering
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Materials Engineering
    183 rdf:type schema:DefinedTerm
    184 sg:journal.1100668 schema:issn 0957-4530
    185 1573-4838
    186 schema:name Journal of Materials Science: Materials in Medicine
    187 schema:publisher Springer Nature
    188 rdf:type schema:Periodical
    189 sg:person.01126515620.17 schema:affiliation grid-institutes:None
    190 schema:familyName Xiao
    191 schema:givenName Feng-juan
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126515620.17
    193 rdf:type schema:Person
    194 sg:person.01267442434.43 schema:affiliation grid-institutes:None
    195 schema:familyName Yun
    196 schema:givenName Li-jiang
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267442434.43
    198 rdf:type schema:Person
    199 sg:pub.10.1023/a:1008923029945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006650791
    200 https://doi.org/10.1023/a:1008923029945
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1023/a:1011205515560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025112371
    203 https://doi.org/10.1023/a:1011205515560
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1023/a:1018587623231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048829343
    206 https://doi.org/10.1023/a:1018587623231
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1557/jmr.1998.0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039886539
    209 https://doi.org/10.1557/jmr.1998.0015
    210 rdf:type schema:CreativeWork
    211 grid-institutes:None schema:alternateName Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China
    212 schema:name Department of Material Science and Engineering, Shjiazhuang Railway Institute, No.17 North 2nd-Ring East Road, 050043, Shijiazhuang, Hebei Province, China
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...