Ontology type: schema:ScholarlyArticle
2021-05-20
AUTHORSWon-Chun Oh, Chang Sung Lim, Yin Liu, Suresh Sagadevan, Won Kweon Jang, Md Rokon Ud Dowla Biswas
ABSTRACTQuaternary nanorod-type BaInSbSe5 semiconductor combined graphene-based conducting polymer (PPy) (BaInSbSe5-G-PPy, BNSGP) nanocomposites were prepared using a facile hydrothermal method. BNSGP nanocomposites were used to make up gas sensors to detect H2O2 and H2S at standard temperature condition. Morphologies, shape, and structures of BNSGP were specified by X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray elemental analyzer (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) technique, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (DRS). When examined with H2O2 and H2S concentrations as low as 10 ppb, the gas sensor using BNSGP nanocomposites showed a good reactivity and sensitivity of 1.25 V/K with real-time response/recovery effects of 234 and 76 s, respectively. It also showed a conspicuously high selectivity for H2O2 and H2S. However, it only showed insignificant response to any other reactance gases such as HCl, CH3OH, and C2H5OH. Its performance as a H2O2 and H2S sensor was estimated by CV meter (cyclic voltammeter). The fabricated sensor for H2O2 and H2S showed an extensive linear selectivity from 300 to 90 ppm with a low detection range of 300 ppm. More... »
PAGES15944-15963
http://scigraph.springernature.com/pub.10.1007/s10854-021-06145-5
DOIhttp://dx.doi.org/10.1007/s10854-021-06145-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1138213237
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Advanced Materials Science & Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea",
"id": "http://www.grid.ac/institutes/grid.411977.d",
"name": [
"Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People\u2019s Republic of China",
"Department of Advanced Materials Science & Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea"
],
"type": "Organization"
},
"familyName": "Oh",
"givenName": "Won-Chun",
"id": "sg:person.015032760145.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Advanced Materials Science & Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea",
"id": "http://www.grid.ac/institutes/grid.411977.d",
"name": [
"Department of Advanced Materials Science & Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea"
],
"type": "Organization"
},
"familyName": "Lim",
"givenName": "Chang Sung",
"id": "sg:person.011270466123.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270466123.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People\u2019s Republic of China",
"id": "http://www.grid.ac/institutes/grid.440648.a",
"name": [
"Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People\u2019s Republic of China"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Yin",
"id": "sg:person.012000343677.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000343677.97"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia",
"id": "http://www.grid.ac/institutes/grid.10347.31",
"name": [
"Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia"
],
"type": "Organization"
},
"familyName": "Sagadevan",
"givenName": "Suresh",
"id": "sg:person.016363240475.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016363240475.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Electronic Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea",
"id": "http://www.grid.ac/institutes/grid.411977.d",
"name": [
"Department of Electronic Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea"
],
"type": "Organization"
},
"familyName": "Jang",
"givenName": "Won Kweon",
"id": "sg:person.01123411646.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123411646.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Advanced Materials Science & Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea",
"id": "http://www.grid.ac/institutes/grid.411977.d",
"name": [
"Department of Advanced Materials Science & Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea"
],
"type": "Organization"
},
"familyName": "Biswas",
"givenName": "Md Rokon Ud Dowla",
"id": "sg:person.015511065355.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015511065355.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11581-017-2413-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100189943",
"https://doi.org/10.1007/s11581-017-2413-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature08140",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004784822",
"https://doi.org/10.1038/nature08140"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11356-019-04441-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112458903",
"https://doi.org/10.1007/s11356-019-04441-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00604-013-1098-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033013836",
"https://doi.org/10.1007/s00604-013-1098-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10854-020-03651-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128021266",
"https://doi.org/10.1007/s10854-020-03651-w"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-05-20",
"datePublishedReg": "2021-05-20",
"description": "Quaternary nanorod-type BaInSbSe5 semiconductor combined graphene-based conducting polymer (PPy) (BaInSbSe5-G-PPy, BNSGP) nanocomposites were prepared using a facile hydrothermal method. BNSGP nanocomposites were used to make up gas sensors to detect H2O2 and H2S at standard temperature condition. Morphologies, shape, and structures of BNSGP were specified by X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray elemental analyzer (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) technique, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (DRS). When examined with H2O2 and H2S concentrations as low as 10\u00a0ppb, the gas sensor using BNSGP nanocomposites showed a good reactivity and sensitivity of 1.25\u00a0V/K with real-time response/recovery effects of 234 and 76\u00a0s, respectively. It also showed a conspicuously high selectivity for H2O2 and H2S. However, it only showed insignificant response to any other reactance gases such as HCl, CH3OH, and C2H5OH. Its performance as a H2O2 and H2S sensor was estimated by CV meter (cyclic voltammeter). The fabricated sensor for H2O2 and H2S showed an extensive linear selectivity from 300 to 90\u00a0ppm with a low detection range of 300\u00a0ppm.",
"genre": "article",
"id": "sg:pub.10.1007/s10854-021-06145-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136825",
"issn": [
"0957-4522",
"1573-482X"
],
"name": "Journal of Materials Science: Materials in Electronics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "32"
}
],
"keywords": [
"transmission electron microscopy",
"diffuse reflectance spectroscopy",
"X-ray photoelectron spectroscopy",
"scanning electron microscopy",
"X-ray diffractometer",
"polymer nanocomposites",
"gas sensors",
"high-resolution TEM techniques",
"electron microscopy",
"facile hydrothermal method",
"low detection range",
"fabricated sensor",
"sensing performance",
"hydrothermal method",
"H2 sensor",
"detection range",
"TEM techniques",
"nanocomposites",
"Raman spectroscopy",
"reflectance spectroscopy",
"linear selectivity",
"photoelectron spectroscopy",
"high selectivity",
"good reactivity",
"elemental analyzer",
"spectroscopy",
"H2 gases",
"sensors",
"H2O2",
"semiconductors",
"selectivity",
"microscopy",
"standard temperature conditions",
"H2 concentration",
"H2",
"temperature conditions",
"CH3OH",
"recovery effect",
"C2H5OH",
"ppm",
"gases",
"performance",
"diffractometer",
"reactivity",
"H2S.",
"HCl",
"morphology",
"ppb",
"analyzer",
"insignificant response",
"structure",
"meters",
"sensitivity",
"concentration",
"technique",
"shape",
"range",
"conditions",
"method",
"effect",
"response"
],
"name": "Quaternary nanorod-type BaInSbSe5 semiconductor combined graphene-based conducting polymer (PPy) nanocomposite and highly sensing performance of H2O2 & H2S gases",
"pagination": "15944-15963",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1138213237"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10854-021-06145-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10854-021-06145-5",
"https://app.dimensions.ai/details/publication/pub.1138213237"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_913.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10854-021-06145-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-021-06145-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-021-06145-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-021-06145-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-021-06145-5'
This table displays all metadata directly associated to this object as RDF triples.
183 TRIPLES
22 PREDICATES
91 URIs
78 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10854-021-06145-5 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N3790dc1698ab4419a22083cb65df2c94 |
4 | ″ | schema:citation | sg:pub.10.1007/s00604-013-1098-0 |
5 | ″ | ″ | sg:pub.10.1007/s10854-020-03651-w |
6 | ″ | ″ | sg:pub.10.1007/s11356-019-04441-6 |
7 | ″ | ″ | sg:pub.10.1007/s11581-017-2413-2 |
8 | ″ | ″ | sg:pub.10.1038/nature08140 |
9 | ″ | schema:datePublished | 2021-05-20 |
10 | ″ | schema:datePublishedReg | 2021-05-20 |
11 | ″ | schema:description | Quaternary nanorod-type BaInSbSe5 semiconductor combined graphene-based conducting polymer (PPy) (BaInSbSe5-G-PPy, BNSGP) nanocomposites were prepared using a facile hydrothermal method. BNSGP nanocomposites were used to make up gas sensors to detect H2O2 and H2S at standard temperature condition. Morphologies, shape, and structures of BNSGP were specified by X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray elemental analyzer (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) technique, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (DRS). When examined with H2O2 and H2S concentrations as low as 10 ppb, the gas sensor using BNSGP nanocomposites showed a good reactivity and sensitivity of 1.25 V/K with real-time response/recovery effects of 234 and 76 s, respectively. It also showed a conspicuously high selectivity for H2O2 and H2S. However, it only showed insignificant response to any other reactance gases such as HCl, CH3OH, and C2H5OH. Its performance as a H2O2 and H2S sensor was estimated by CV meter (cyclic voltammeter). The fabricated sensor for H2O2 and H2S showed an extensive linear selectivity from 300 to 90 ppm with a low detection range of 300 ppm. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N502bbbfb5e224b39a40c9a9e942e3083 |
16 | ″ | ″ | N7523e7fa2c3c4439882e84819e3bce9a |
17 | ″ | ″ | sg:journal.1136825 |
18 | ″ | schema:keywords | C2H5OH |
19 | ″ | ″ | CH3OH |
20 | ″ | ″ | H2 |
21 | ″ | ″ | H2 concentration |
22 | ″ | ″ | H2 gases |
23 | ″ | ″ | H2 sensor |
24 | ″ | ″ | H2O2 |
25 | ″ | ″ | H2S. |
26 | ″ | ″ | HCl |
27 | ″ | ″ | Raman spectroscopy |
28 | ″ | ″ | TEM techniques |
29 | ″ | ″ | X-ray diffractometer |
30 | ″ | ″ | X-ray photoelectron spectroscopy |
31 | ″ | ″ | analyzer |
32 | ″ | ″ | concentration |
33 | ″ | ″ | conditions |
34 | ″ | ″ | detection range |
35 | ″ | ″ | diffractometer |
36 | ″ | ″ | diffuse reflectance spectroscopy |
37 | ″ | ″ | effect |
38 | ″ | ″ | electron microscopy |
39 | ″ | ″ | elemental analyzer |
40 | ″ | ″ | fabricated sensor |
41 | ″ | ″ | facile hydrothermal method |
42 | ″ | ″ | gas sensors |
43 | ″ | ″ | gases |
44 | ″ | ″ | good reactivity |
45 | ″ | ″ | high selectivity |
46 | ″ | ″ | high-resolution TEM techniques |
47 | ″ | ″ | hydrothermal method |
48 | ″ | ″ | insignificant response |
49 | ″ | ″ | linear selectivity |
50 | ″ | ″ | low detection range |
51 | ″ | ″ | meters |
52 | ″ | ″ | method |
53 | ″ | ″ | microscopy |
54 | ″ | ″ | morphology |
55 | ″ | ″ | nanocomposites |
56 | ″ | ″ | performance |
57 | ″ | ″ | photoelectron spectroscopy |
58 | ″ | ″ | polymer nanocomposites |
59 | ″ | ″ | ppb |
60 | ″ | ″ | ppm |
61 | ″ | ″ | range |
62 | ″ | ″ | reactivity |
63 | ″ | ″ | recovery effect |
64 | ″ | ″ | reflectance spectroscopy |
65 | ″ | ″ | response |
66 | ″ | ″ | scanning electron microscopy |
67 | ″ | ″ | selectivity |
68 | ″ | ″ | semiconductors |
69 | ″ | ″ | sensing performance |
70 | ″ | ″ | sensitivity |
71 | ″ | ″ | sensors |
72 | ″ | ″ | shape |
73 | ″ | ″ | spectroscopy |
74 | ″ | ″ | standard temperature conditions |
75 | ″ | ″ | structure |
76 | ″ | ″ | technique |
77 | ″ | ″ | temperature conditions |
78 | ″ | ″ | transmission electron microscopy |
79 | ″ | schema:name | Quaternary nanorod-type BaInSbSe5 semiconductor combined graphene-based conducting polymer (PPy) nanocomposite and highly sensing performance of H2O2 & H2S gases |
80 | ″ | schema:pagination | 15944-15963 |
81 | ″ | schema:productId | N72aac523a158416b99add2338e677a9b |
82 | ″ | ″ | N90d67821127e4cd4907eb177ce9b685d |
83 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1138213237 |
84 | ″ | ″ | https://doi.org/10.1007/s10854-021-06145-5 |
85 | ″ | schema:sdDatePublished | 2022-05-10T10:29 |
86 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
87 | ″ | schema:sdPublisher | N1785ce71d43d4b8c8ac27bf4e167e52d |
88 | ″ | schema:url | https://doi.org/10.1007/s10854-021-06145-5 |
89 | ″ | sgo:license | sg:explorer/license/ |
90 | ″ | sgo:sdDataset | articles |
91 | ″ | rdf:type | schema:ScholarlyArticle |
92 | N1785ce71d43d4b8c8ac27bf4e167e52d | schema:name | Springer Nature - SN SciGraph project |
93 | ″ | rdf:type | schema:Organization |
94 | N1be02108d7744db19f8c8786800a0e73 | rdf:first | sg:person.012000343677.97 |
95 | ″ | rdf:rest | N5ddcc919e0cf45ee9f919e109611dd28 |
96 | N3790dc1698ab4419a22083cb65df2c94 | rdf:first | sg:person.015032760145.10 |
97 | ″ | rdf:rest | Nced7695cc6a54bd8b050511231fde150 |
98 | N502bbbfb5e224b39a40c9a9e942e3083 | schema:volumeNumber | 32 |
99 | ″ | rdf:type | schema:PublicationVolume |
100 | N5297e2ae7a52472bae2ce4212b49443a | rdf:first | sg:person.01123411646.13 |
101 | ″ | rdf:rest | N67f9ac87185148b9a934d04e2382217f |
102 | N5ddcc919e0cf45ee9f919e109611dd28 | rdf:first | sg:person.016363240475.09 |
103 | ″ | rdf:rest | N5297e2ae7a52472bae2ce4212b49443a |
104 | N67f9ac87185148b9a934d04e2382217f | rdf:first | sg:person.015511065355.31 |
105 | ″ | rdf:rest | rdf:nil |
106 | N72aac523a158416b99add2338e677a9b | schema:name | doi |
107 | ″ | schema:value | 10.1007/s10854-021-06145-5 |
108 | ″ | rdf:type | schema:PropertyValue |
109 | N7523e7fa2c3c4439882e84819e3bce9a | schema:issueNumber | 12 |
110 | ″ | rdf:type | schema:PublicationIssue |
111 | N90d67821127e4cd4907eb177ce9b685d | schema:name | dimensions_id |
112 | ″ | schema:value | pub.1138213237 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | Nced7695cc6a54bd8b050511231fde150 | rdf:first | sg:person.011270466123.07 |
115 | ″ | rdf:rest | N1be02108d7744db19f8c8786800a0e73 |
116 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Engineering |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Materials Engineering |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | sg:journal.1136825 | schema:issn | 0957-4522 |
123 | ″ | ″ | 1573-482X |
124 | ″ | schema:name | Journal of Materials Science: Materials in Electronics |
125 | ″ | schema:publisher | Springer Nature |
126 | ″ | rdf:type | schema:Periodical |
127 | sg:person.01123411646.13 | schema:affiliation | grid-institutes:grid.411977.d |
128 | ″ | schema:familyName | Jang |
129 | ″ | schema:givenName | Won Kweon |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123411646.13 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.011270466123.07 | schema:affiliation | grid-institutes:grid.411977.d |
133 | ″ | schema:familyName | Lim |
134 | ″ | schema:givenName | Chang Sung |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270466123.07 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.012000343677.97 | schema:affiliation | grid-institutes:grid.440648.a |
138 | ″ | schema:familyName | Liu |
139 | ″ | schema:givenName | Yin |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000343677.97 |
141 | ″ | rdf:type | schema:Person |
142 | sg:person.015032760145.10 | schema:affiliation | grid-institutes:grid.411977.d |
143 | ″ | schema:familyName | Oh |
144 | ″ | schema:givenName | Won-Chun |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10 |
146 | ″ | rdf:type | schema:Person |
147 | sg:person.015511065355.31 | schema:affiliation | grid-institutes:grid.411977.d |
148 | ″ | schema:familyName | Biswas |
149 | ″ | schema:givenName | Md Rokon Ud Dowla |
150 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015511065355.31 |
151 | ″ | rdf:type | schema:Person |
152 | sg:person.016363240475.09 | schema:affiliation | grid-institutes:grid.10347.31 |
153 | ″ | schema:familyName | Sagadevan |
154 | ″ | schema:givenName | Suresh |
155 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016363240475.09 |
156 | ″ | rdf:type | schema:Person |
157 | sg:pub.10.1007/s00604-013-1098-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033013836 |
158 | ″ | ″ | https://doi.org/10.1007/s00604-013-1098-0 |
159 | ″ | rdf:type | schema:CreativeWork |
160 | sg:pub.10.1007/s10854-020-03651-w | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1128021266 |
161 | ″ | ″ | https://doi.org/10.1007/s10854-020-03651-w |
162 | ″ | rdf:type | schema:CreativeWork |
163 | sg:pub.10.1007/s11356-019-04441-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1112458903 |
164 | ″ | ″ | https://doi.org/10.1007/s11356-019-04441-6 |
165 | ″ | rdf:type | schema:CreativeWork |
166 | sg:pub.10.1007/s11581-017-2413-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1100189943 |
167 | ″ | ″ | https://doi.org/10.1007/s11581-017-2413-2 |
168 | ″ | rdf:type | schema:CreativeWork |
169 | sg:pub.10.1038/nature08140 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004784822 |
170 | ″ | ″ | https://doi.org/10.1038/nature08140 |
171 | ″ | rdf:type | schema:CreativeWork |
172 | grid-institutes:grid.10347.31 | schema:alternateName | Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia |
173 | ″ | schema:name | Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia |
174 | ″ | rdf:type | schema:Organization |
175 | grid-institutes:grid.411977.d | schema:alternateName | Department of Advanced Materials Science & Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea |
176 | ″ | ″ | Department of Electronic Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea |
177 | ″ | schema:name | Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People’s Republic of China |
178 | ″ | ″ | Department of Advanced Materials Science & Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea |
179 | ″ | ″ | Department of Electronic Engineering, Hanseo University, 31962, Seosan-si, Chungcheongnam-do, South Korea |
180 | ″ | rdf:type | schema:Organization |
181 | grid-institutes:grid.440648.a | schema:alternateName | Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People’s Republic of China |
182 | ″ | schema:name | Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People’s Republic of China |
183 | ″ | rdf:type | schema:Organization |