Toward the application of electromagnetic wave absorption by two-dimension materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-06-22

AUTHORS

Jiaolong Liu, Zehao Zhao, Limin Zhang

ABSTRACT

Searching for the superior electromagnetic wave absorption materials (EMWAMs) has sparked giant interest owing to the increasingly serious electromagnetic wave (EMW) pollution and the boosting development of stealth fighters. Among numerous EMW absorbing materials, the two-dimension (2D) materials with unique layered morphology, low mass density, excellent processability and controllable electromagnetic parameters stand out for the lightweight, high-efficiency EMW absorbing materials. Here, we will summary the state-of-art progress on the 2D materials for EMWAMs, including graphene, MoS2, h-BN, g-C3N4, LDH (layered double hydroxides) and others. Meanwhile, the relevant preparation synthesis, absorption mechanisms and performance comparisons are presented. Specially, with the aim to obtain the superior absorption ability in term of broad effective absorption bandwidth (EAB), strong absorption intensity and thin thickness, the two key factors that significantly influence the ultimate performance, namely, good impedance matching and strong attenuation capacity, have been considered all the time. Finally, the bottlenecks and outlooks are further put forward on the basis of its current development. More... »

PAGES

25562-25576

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-020-03800-1

DOI

http://dx.doi.org/10.1007/s10854-020-03800-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1128671270


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiaolong", 
        "id": "sg:person.016021033427.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016021033427.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Zehao", 
        "id": "sg:person.014034467503.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034467503.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Limin", 
        "id": "sg:person.010644777435.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644777435.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms3995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014167688", 
          "https://doi.org/10.1038/ncomms3995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-018-9909-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106321824", 
          "https://doi.org/10.1007/s10854-018-9909-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41699-019-0115-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120520345", 
          "https://doi.org/10.1038/s41699-019-0115-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-019-01537-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1115215620", 
          "https://doi.org/10.1007/s10854-019-01537-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11467-018-0809-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105250043", 
          "https://doi.org/10.1007/s11467-018-0809-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-06-22", 
    "datePublishedReg": "2020-06-22", 
    "description": "Searching for the superior electromagnetic wave absorption materials (EMWAMs) has sparked giant interest owing to the increasingly serious electromagnetic wave (EMW) pollution and the boosting development of stealth fighters. Among numerous EMW absorbing materials, the two-dimension (2D) materials with unique layered morphology, low mass density, excellent processability and controllable electromagnetic parameters stand out for the lightweight, high-efficiency EMW absorbing materials. Here, we will summary the state-of-art progress on the 2D materials for EMWAMs, including graphene, MoS2, h-BN, g-C3N4, LDH (layered double hydroxides) and others. Meanwhile, the relevant preparation synthesis, absorption mechanisms and performance comparisons are presented. Specially, with the aim to obtain the superior absorption ability in term of broad effective absorption bandwidth (EAB), strong absorption intensity and thin thickness, the two key factors that significantly influence the ultimate performance, namely, good impedance matching and strong attenuation capacity, have been considered all the time. Finally, the bottlenecks and outlooks are further put forward on the basis of its current development.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10854-020-03800-1", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8900937", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8931596", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "21", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "electromagnetic wave absorption materials", 
      "effective absorption bandwidth", 
      "two-dimension materials", 
      "broad effective absorption bandwidth", 
      "electromagnetic wave pollution", 
      "wave absorption materials", 
      "electromagnetic wave absorption", 
      "strong attenuation capacity", 
      "low mass density", 
      "superior absorption ability", 
      "strong absorption intensity", 
      "absorption materials", 
      "excellent processability", 
      "absorption bandwidth", 
      "thin thickness", 
      "wave absorption", 
      "electromagnetic parameters", 
      "h-BN", 
      "absorption ability", 
      "attenuation capacity", 
      "impedance matching", 
      "art progress", 
      "ultimate performance", 
      "good impedance matching", 
      "stealth fighters", 
      "absorption mechanism", 
      "performance comparison", 
      "materials", 
      "EMW", 
      "mass density", 
      "processability", 
      "C3N4", 
      "MoS2", 
      "graphene", 
      "absorption intensity", 
      "thickness", 
      "key factors", 
      "current developments", 
      "bandwidth", 
      "performance", 
      "density", 
      "morphology", 
      "applications", 
      "parameters", 
      "pollution", 
      "absorption", 
      "capacity", 
      "bottleneck", 
      "matching", 
      "comparison", 
      "development", 
      "intensity", 
      "time", 
      "outlook", 
      "terms", 
      "mechanism", 
      "LDH", 
      "progress", 
      "interest", 
      "fighters", 
      "synthesis", 
      "state", 
      "basis", 
      "ability", 
      "factors", 
      "aim"
    ], 
    "name": "Toward the application of electromagnetic wave absorption by two-dimension materials", 
    "pagination": "25562-25576", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1128671270"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-020-03800-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-020-03800-1", 
      "https://app.dimensions.ai/details/publication/pub.1128671270"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_857.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10854-020-03800-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-020-03800-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-020-03800-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-020-03800-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-020-03800-1'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      95 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-020-03800-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Naf28e49c05714ef993a3788d74653da8
4 schema:citation sg:pub.10.1007/s10854-018-9909-z
5 sg:pub.10.1007/s10854-019-01537-0
6 sg:pub.10.1007/s11467-018-0809-8
7 sg:pub.10.1038/ncomms3995
8 sg:pub.10.1038/s41699-019-0115-5
9 schema:datePublished 2020-06-22
10 schema:datePublishedReg 2020-06-22
11 schema:description Searching for the superior electromagnetic wave absorption materials (EMWAMs) has sparked giant interest owing to the increasingly serious electromagnetic wave (EMW) pollution and the boosting development of stealth fighters. Among numerous EMW absorbing materials, the two-dimension (2D) materials with unique layered morphology, low mass density, excellent processability and controllable electromagnetic parameters stand out for the lightweight, high-efficiency EMW absorbing materials. Here, we will summary the state-of-art progress on the 2D materials for EMWAMs, including graphene, MoS2, h-BN, g-C3N4, LDH (layered double hydroxides) and others. Meanwhile, the relevant preparation synthesis, absorption mechanisms and performance comparisons are presented. Specially, with the aim to obtain the superior absorption ability in term of broad effective absorption bandwidth (EAB), strong absorption intensity and thin thickness, the two key factors that significantly influence the ultimate performance, namely, good impedance matching and strong attenuation capacity, have been considered all the time. Finally, the bottlenecks and outlooks are further put forward on the basis of its current development.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N11fc8ad2b5ed480881df60b49198c983
15 N560a258cf8ea43c5a87fc12100891e42
16 sg:journal.1136825
17 schema:keywords C3N4
18 EMW
19 LDH
20 MoS2
21 ability
22 absorption
23 absorption ability
24 absorption bandwidth
25 absorption intensity
26 absorption materials
27 absorption mechanism
28 aim
29 applications
30 art progress
31 attenuation capacity
32 bandwidth
33 basis
34 bottleneck
35 broad effective absorption bandwidth
36 capacity
37 comparison
38 current developments
39 density
40 development
41 effective absorption bandwidth
42 electromagnetic parameters
43 electromagnetic wave absorption
44 electromagnetic wave absorption materials
45 electromagnetic wave pollution
46 excellent processability
47 factors
48 fighters
49 good impedance matching
50 graphene
51 h-BN
52 impedance matching
53 intensity
54 interest
55 key factors
56 low mass density
57 mass density
58 matching
59 materials
60 mechanism
61 morphology
62 outlook
63 parameters
64 performance
65 performance comparison
66 pollution
67 processability
68 progress
69 state
70 stealth fighters
71 strong absorption intensity
72 strong attenuation capacity
73 superior absorption ability
74 synthesis
75 terms
76 thickness
77 thin thickness
78 time
79 two-dimension materials
80 ultimate performance
81 wave absorption
82 wave absorption materials
83 schema:name Toward the application of electromagnetic wave absorption by two-dimension materials
84 schema:pagination 25562-25576
85 schema:productId N4e9a731e788b47798d9fb33275b11bfa
86 Nefa0f88fa9294813b8758a78984f4fa5
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128671270
88 https://doi.org/10.1007/s10854-020-03800-1
89 schema:sdDatePublished 2022-11-24T21:05
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N78d1b2a42a504eb3a283958968246079
92 schema:url https://doi.org/10.1007/s10854-020-03800-1
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N11fc8ad2b5ed480881df60b49198c983 schema:volumeNumber 32
97 rdf:type schema:PublicationVolume
98 N4e9a731e788b47798d9fb33275b11bfa schema:name doi
99 schema:value 10.1007/s10854-020-03800-1
100 rdf:type schema:PropertyValue
101 N560a258cf8ea43c5a87fc12100891e42 schema:issueNumber 21
102 rdf:type schema:PublicationIssue
103 N78d1b2a42a504eb3a283958968246079 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N8d094d01f95349a2b82d6f04fda8c17a rdf:first sg:person.014034467503.14
106 rdf:rest Nfc2091425589486c9c8dc0aba78ede26
107 Naf28e49c05714ef993a3788d74653da8 rdf:first sg:person.016021033427.74
108 rdf:rest N8d094d01f95349a2b82d6f04fda8c17a
109 Nefa0f88fa9294813b8758a78984f4fa5 schema:name dimensions_id
110 schema:value pub.1128671270
111 rdf:type schema:PropertyValue
112 Nfc2091425589486c9c8dc0aba78ede26 rdf:first sg:person.010644777435.46
113 rdf:rest rdf:nil
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:grant.8900937 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-020-03800-1
121 rdf:type schema:MonetaryGrant
122 sg:grant.8931596 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-020-03800-1
123 rdf:type schema:MonetaryGrant
124 sg:journal.1136825 schema:issn 0957-4522
125 1573-482X
126 schema:name Journal of Materials Science: Materials in Electronics
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.010644777435.46 schema:affiliation grid-institutes:grid.440588.5
130 schema:familyName Zhang
131 schema:givenName Limin
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644777435.46
133 rdf:type schema:Person
134 sg:person.014034467503.14 schema:affiliation grid-institutes:grid.440588.5
135 schema:familyName Zhao
136 schema:givenName Zehao
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034467503.14
138 rdf:type schema:Person
139 sg:person.016021033427.74 schema:affiliation grid-institutes:grid.440588.5
140 schema:familyName Liu
141 schema:givenName Jiaolong
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016021033427.74
143 rdf:type schema:Person
144 sg:pub.10.1007/s10854-018-9909-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106321824
145 https://doi.org/10.1007/s10854-018-9909-z
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10854-019-01537-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115215620
148 https://doi.org/10.1007/s10854-019-01537-0
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11467-018-0809-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105250043
151 https://doi.org/10.1007/s11467-018-0809-8
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/ncomms3995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014167688
154 https://doi.org/10.1038/ncomms3995
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/s41699-019-0115-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120520345
157 https://doi.org/10.1038/s41699-019-0115-5
158 rdf:type schema:CreativeWork
159 grid-institutes:grid.440588.5 schema:alternateName School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi’an, China
160 School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi’an, People’s Republic of China
161 schema:name School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi’an, China
162 School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi’an, People’s Republic of China
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...