Effect of plasmon–phonon interaction on the infrared reflection spectra of MgxZn1-xO/Al2O3 structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-02-28

AUTHORS

O. Melnichuk, L. Melnichuk, Ye. Venger, T. Torchynska, N. Korsunska, L. Khomenkova

ABSTRACT

The effect of plasmon–phonon interaction on the vibrational properties of the MgxZn1-xO films on anisotropic substrate is studied versus Mg content (x), film thickness (0.5–20 μm), free carrier concentration (1×1016–5×1018 cm−3) and damping coefficients using infrared reflection spectroscopy. The mathematical model with additive and phenomenological contribution of several oscillators to dielectric permittivity of MgxZn1-xO material was developed. The infrared reflection spectra were simulated in the range of “residual rays” of the film and the substrate for MgxZn1-xO/Al2O3 structures using self-consisted parameters of bulk ZnO, MgO and Al2O3 materials. Based on the Kramers–Kronig relationship, the frequency range where film reflectivity is sensitive to the variation of film doping and thickness was determined. The frequencies and damping coefficients of TO and LO modes of the oscillators, static and high-frequency dielectric permittivity for orientation E⊥c were obtained with high accuracy. Main attention was paid to the compositions which were in hexagonal structure. Experimental infrared reflection spectra were recorded for the films with x = 0.25 additionally doped with manganese and their simulation was performed based on the model developed. The free carrier concentration and mobility as well as film conductivity were determined. The results obtained showed the utility of infrared reflection spectroscopy for the investigation of textured alloy films. This non-destructive and contactless method can be implemented for the determination of optical properties of other semiconductor films. More... »

PAGES

7539-7546

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-020-03110-6

DOI

http://dx.doi.org/10.1007/s10854-020-03110-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1125140127


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mykola Gogol State University of Nizhyn, 2 Hrafska Str., 16600, Nizhyn, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.445899.d", 
          "name": [
            "Mykola Gogol State University of Nizhyn, 2 Hrafska Str., 16600, Nizhyn, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Melnichuk", 
        "givenName": "O.", 
        "id": "sg:person.010765311470.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010765311470.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mykola Gogol State University of Nizhyn, 2 Hrafska Str., 16600, Nizhyn, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.445899.d", 
          "name": [
            "Mykola Gogol State University of Nizhyn, 2 Hrafska Str., 16600, Nizhyn, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Melnichuk", 
        "givenName": "L.", 
        "id": "sg:person.011002415231.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002415231.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, 45 Pr. Nauky, 03650, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.466789.2", 
          "name": [
            "V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, 45 Pr. Nauky, 03650, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venger", 
        "givenName": "Ye.", 
        "id": "sg:person.014671316310.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014671316310.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional-IPN, ESFM, Ave. IPN, 07738, Mexico City, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Instituto Polit\u00e9cnico Nacional-IPN, ESFM, Ave. IPN, 07738, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torchynska", 
        "givenName": "T.", 
        "id": "sg:person.07350461223.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350461223.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, 45 Pr. Nauky, 03650, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.466789.2", 
          "name": [
            "V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, 45 Pr. Nauky, 03650, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korsunska", 
        "givenName": "N.", 
        "id": "sg:person.013573445657.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573445657.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University \u201cKyiv-Mohyla Academy\u201d, 2 Skovorody Str., 04070, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.77971.3f", 
          "name": [
            "V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, 45 Pr. Nauky, 03650, Kyiv, Ukraine", 
            "National University \u201cKyiv-Mohyla Academy\u201d, 2 Skovorody Str., 04070, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khomenkova", 
        "givenName": "L.", 
        "id": "sg:person.0777143227.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777143227.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10854-018-9772-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106019041", 
          "https://doi.org/10.1007/s10854-018-9772-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1258935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001085561", 
          "https://doi.org/10.1134/1.1258935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01538530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027487063", 
          "https://doi.org/10.1007/bf01538530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73612-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021869569", 
          "https://doi.org/10.1007/978-3-540-73612-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-02-28", 
    "datePublishedReg": "2020-02-28", 
    "description": "The effect of plasmon\u2013phonon interaction on the vibrational properties of the MgxZn1-xO films on anisotropic substrate is studied versus Mg content (x), film thickness (0.5\u201320\u00a0\u03bcm), free carrier concentration (1\u00d71016\u20135\u00d71018\u00a0cm\u22123) and damping coefficients using infrared reflection spectroscopy. The mathematical model with additive and phenomenological contribution of several oscillators to dielectric permittivity of MgxZn1-xO material was developed. The infrared reflection spectra were simulated in the range of \u201cresidual rays\u201d of the film and the substrate for MgxZn1-xO/Al2O3 structures using self-consisted parameters of bulk ZnO, MgO and Al2O3 materials. Based on the Kramers\u2013Kronig relationship, the frequency range where film reflectivity is sensitive to the variation of film doping and thickness was determined. The frequencies and damping coefficients of TO and LO modes of the oscillators, static and high-frequency dielectric permittivity for orientation E\u22a5c were obtained with high accuracy. Main attention was paid to the compositions which were in hexagonal structure. Experimental infrared reflection spectra were recorded for the films with x\u2009=\u20090.25 additionally doped with manganese and their simulation was performed based on the model developed. The free carrier concentration and mobility as well as film conductivity were determined. The results obtained showed the utility of infrared reflection spectroscopy for the investigation of textured alloy films. This non-destructive and contactless method can be implemented for the determination of optical properties of other semiconductor films.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10854-020-03110-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "plasmon\u2013phonon interaction", 
      "free carrier concentration", 
      "Al2O3 structure", 
      "carrier concentration", 
      "infrared reflection spectra", 
      "MgxZn1-xO films", 
      "mathematical model", 
      "film doping", 
      "semiconductor films", 
      "reflection spectroscopy", 
      "film thickness", 
      "film conductivity", 
      "alloy films", 
      "Al2O3 materials", 
      "reflection spectra", 
      "high-frequency dielectric permittivity", 
      "infrared reflection spectroscopy", 
      "contactless method", 
      "film reflectivity", 
      "dielectric permittivity", 
      "Kramers-Kronig relationship", 
      "films", 
      "residual rays", 
      "anisotropic substrates", 
      "frequency range", 
      "vibrational properties", 
      "main attention", 
      "hexagonal structure", 
      "infrared reflection", 
      "permittivity", 
      "bulk ZnO", 
      "oscillator", 
      "optical properties", 
      "thickness", 
      "high accuracy", 
      "Mg content", 
      "materials", 
      "substrate", 
      "LO mode", 
      "properties", 
      "ZnO", 
      "conductivity", 
      "coefficient", 
      "doping", 
      "model", 
      "structure", 
      "simulations", 
      "spectroscopy", 
      "MgO", 
      "reflectivity", 
      "range", 
      "phenomenological contributions", 
      "rays", 
      "parameters", 
      "spectra", 
      "accuracy", 
      "mode", 
      "orientation", 
      "concentration", 
      "effect", 
      "frequency", 
      "mobility", 
      "investigation", 
      "manganese", 
      "method", 
      "composition", 
      "interaction", 
      "content", 
      "variation", 
      "results", 
      "reflection", 
      "TO", 
      "determination", 
      "contribution", 
      "attention", 
      "utility", 
      "relationship"
    ], 
    "name": "Effect of plasmon\u2013phonon interaction on the infrared reflection spectra of MgxZn1-xO/Al2O3 structures", 
    "pagination": "7539-7546", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1125140127"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-020-03110-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-020-03110-6", 
      "https://app.dimensions.ai/details/publication/pub.1125140127"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_875.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10854-020-03110-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-020-03110-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-020-03110-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-020-03110-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-020-03110-6'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      105 URIs      93 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-020-03110-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N92b18cf54b7d46d49818d6e4bbc2f969
4 schema:citation sg:pub.10.1007/978-3-540-73612-7
5 sg:pub.10.1007/bf01538530
6 sg:pub.10.1007/s10854-018-9772-y
7 sg:pub.10.1134/1.1258935
8 schema:datePublished 2020-02-28
9 schema:datePublishedReg 2020-02-28
10 schema:description The effect of plasmon–phonon interaction on the vibrational properties of the MgxZn1-xO films on anisotropic substrate is studied versus Mg content (x), film thickness (0.5–20 μm), free carrier concentration (1×1016–5×1018 cm−3) and damping coefficients using infrared reflection spectroscopy. The mathematical model with additive and phenomenological contribution of several oscillators to dielectric permittivity of MgxZn1-xO material was developed. The infrared reflection spectra were simulated in the range of “residual rays” of the film and the substrate for MgxZn1-xO/Al2O3 structures using self-consisted parameters of bulk ZnO, MgO and Al2O3 materials. Based on the Kramers–Kronig relationship, the frequency range where film reflectivity is sensitive to the variation of film doping and thickness was determined. The frequencies and damping coefficients of TO and LO modes of the oscillators, static and high-frequency dielectric permittivity for orientation E⊥c were obtained with high accuracy. Main attention was paid to the compositions which were in hexagonal structure. Experimental infrared reflection spectra were recorded for the films with x = 0.25 additionally doped with manganese and their simulation was performed based on the model developed. The free carrier concentration and mobility as well as film conductivity were determined. The results obtained showed the utility of infrared reflection spectroscopy for the investigation of textured alloy films. This non-destructive and contactless method can be implemented for the determination of optical properties of other semiconductor films.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N0ca7342cf7234a439dfe2d21dd5a1a1a
14 Ndae1f9a685534a15979f8d712fa037e7
15 sg:journal.1136825
16 schema:keywords Al2O3 materials
17 Al2O3 structure
18 Kramers-Kronig relationship
19 LO mode
20 Mg content
21 MgO
22 MgxZn1-xO films
23 TO
24 ZnO
25 accuracy
26 alloy films
27 anisotropic substrates
28 attention
29 bulk ZnO
30 carrier concentration
31 coefficient
32 composition
33 concentration
34 conductivity
35 contactless method
36 content
37 contribution
38 determination
39 dielectric permittivity
40 doping
41 effect
42 film conductivity
43 film doping
44 film reflectivity
45 film thickness
46 films
47 free carrier concentration
48 frequency
49 frequency range
50 hexagonal structure
51 high accuracy
52 high-frequency dielectric permittivity
53 infrared reflection
54 infrared reflection spectra
55 infrared reflection spectroscopy
56 interaction
57 investigation
58 main attention
59 manganese
60 materials
61 mathematical model
62 method
63 mobility
64 mode
65 model
66 optical properties
67 orientation
68 oscillator
69 parameters
70 permittivity
71 phenomenological contributions
72 plasmon–phonon interaction
73 properties
74 range
75 rays
76 reflection
77 reflection spectra
78 reflection spectroscopy
79 reflectivity
80 relationship
81 residual rays
82 results
83 semiconductor films
84 simulations
85 spectra
86 spectroscopy
87 structure
88 substrate
89 thickness
90 utility
91 variation
92 vibrational properties
93 schema:name Effect of plasmon–phonon interaction on the infrared reflection spectra of MgxZn1-xO/Al2O3 structures
94 schema:pagination 7539-7546
95 schema:productId N12afc51e43fa4002942c07d78fde0f5f
96 Nbeae7d5c9ca04c289b4e44ffa7a5d0d8
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125140127
98 https://doi.org/10.1007/s10854-020-03110-6
99 schema:sdDatePublished 2022-10-01T06:48
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N5f3f4ffea1444675a4294cd005302df2
102 schema:url https://doi.org/10.1007/s10854-020-03110-6
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N0ca7342cf7234a439dfe2d21dd5a1a1a schema:volumeNumber 31
107 rdf:type schema:PublicationVolume
108 N12afc51e43fa4002942c07d78fde0f5f schema:name doi
109 schema:value 10.1007/s10854-020-03110-6
110 rdf:type schema:PropertyValue
111 N5f3f4ffea1444675a4294cd005302df2 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N92b18cf54b7d46d49818d6e4bbc2f969 rdf:first sg:person.010765311470.39
114 rdf:rest Nc4e73aa7045f4881a3ea69051729bdc0
115 Nbeae7d5c9ca04c289b4e44ffa7a5d0d8 schema:name dimensions_id
116 schema:value pub.1125140127
117 rdf:type schema:PropertyValue
118 Nc4e73aa7045f4881a3ea69051729bdc0 rdf:first sg:person.011002415231.23
119 rdf:rest Nf456c4bb96d9446ca84084e12fb853e5
120 Nd40df1fed75243af8fa9061e8afd934e rdf:first sg:person.013573445657.21
121 rdf:rest Nf58a96a6ab5c42378dadf54e85085774
122 Ndae1f9a685534a15979f8d712fa037e7 schema:issueNumber 10
123 rdf:type schema:PublicationIssue
124 Nf456c4bb96d9446ca84084e12fb853e5 rdf:first sg:person.014671316310.92
125 rdf:rest Nf74be76680074082b5950f099a7d1f1a
126 Nf58a96a6ab5c42378dadf54e85085774 rdf:first sg:person.0777143227.34
127 rdf:rest rdf:nil
128 Nf74be76680074082b5950f099a7d1f1a rdf:first sg:person.07350461223.08
129 rdf:rest Nd40df1fed75243af8fa9061e8afd934e
130 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
131 schema:name Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
134 schema:name Materials Engineering
135 rdf:type schema:DefinedTerm
136 sg:journal.1136825 schema:issn 0957-4522
137 1573-482X
138 schema:name Journal of Materials Science: Materials in Electronics
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.010765311470.39 schema:affiliation grid-institutes:grid.445899.d
142 schema:familyName Melnichuk
143 schema:givenName O.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010765311470.39
145 rdf:type schema:Person
146 sg:person.011002415231.23 schema:affiliation grid-institutes:grid.445899.d
147 schema:familyName Melnichuk
148 schema:givenName L.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002415231.23
150 rdf:type schema:Person
151 sg:person.013573445657.21 schema:affiliation grid-institutes:grid.466789.2
152 schema:familyName Korsunska
153 schema:givenName N.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573445657.21
155 rdf:type schema:Person
156 sg:person.014671316310.92 schema:affiliation grid-institutes:grid.466789.2
157 schema:familyName Venger
158 schema:givenName Ye.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014671316310.92
160 rdf:type schema:Person
161 sg:person.07350461223.08 schema:affiliation grid-institutes:grid.418275.d
162 schema:familyName Torchynska
163 schema:givenName T.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350461223.08
165 rdf:type schema:Person
166 sg:person.0777143227.34 schema:affiliation grid-institutes:grid.77971.3f
167 schema:familyName Khomenkova
168 schema:givenName L.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777143227.34
170 rdf:type schema:Person
171 sg:pub.10.1007/978-3-540-73612-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021869569
172 https://doi.org/10.1007/978-3-540-73612-7
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/bf01538530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027487063
175 https://doi.org/10.1007/bf01538530
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s10854-018-9772-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1106019041
178 https://doi.org/10.1007/s10854-018-9772-y
179 rdf:type schema:CreativeWork
180 sg:pub.10.1134/1.1258935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001085561
181 https://doi.org/10.1134/1.1258935
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.418275.d schema:alternateName Instituto Politécnico Nacional-IPN, ESFM, Ave. IPN, 07738, Mexico City, Mexico
184 schema:name Instituto Politécnico Nacional-IPN, ESFM, Ave. IPN, 07738, Mexico City, Mexico
185 rdf:type schema:Organization
186 grid-institutes:grid.445899.d schema:alternateName Mykola Gogol State University of Nizhyn, 2 Hrafska Str., 16600, Nizhyn, Ukraine
187 schema:name Mykola Gogol State University of Nizhyn, 2 Hrafska Str., 16600, Nizhyn, Ukraine
188 rdf:type schema:Organization
189 grid-institutes:grid.466789.2 schema:alternateName V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, 45 Pr. Nauky, 03650, Kyiv, Ukraine
190 schema:name V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, 45 Pr. Nauky, 03650, Kyiv, Ukraine
191 rdf:type schema:Organization
192 grid-institutes:grid.77971.3f schema:alternateName National University “Kyiv-Mohyla Academy”, 2 Skovorody Str., 04070, Kyiv, Ukraine
193 schema:name National University “Kyiv-Mohyla Academy”, 2 Skovorody Str., 04070, Kyiv, Ukraine
194 V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, 45 Pr. Nauky, 03650, Kyiv, Ukraine
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...