Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-21

AUTHORS

Shanshan Yao, Sikang Xue, Sihuang Peng, Maoxiang Jing, Xinye Qian, Xiangqian Shen, Tianbao Li, Yanhua Wang

ABSTRACT

Graphitic carbon nitride (g-C3N4) was produced by the direct thermal-pyrolysis of urea at different temperatures without additive assistance. The physical properties of porous g-C3N4 were characterized by various measurement methods: X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ay photoelectron spectroscopy (XPS). The effect of thermal-pyrolysis temperature on electrochemical behaviors of was researched as the sulfur matrices in lithium–sulfur batteries. The g-C3N4 prepared at 550 °C with sulfur matrix exhibits the superior electrochemical performances. As the result, the sulfur/CN-550 composite cathode exhibits a high initial discharge capacity of 1262.1 mAh g−1 and delivers a specific capacity of 605.4 mAh g−1 over 500 cycles at 0.39 mA cm−2. The excellent electrochemical behavior of the g-C3N4 could be ascribed to the effective utilization of sulfur and the combination of polysulfides dissolution through physical and chemical interactions to achieve long-term circulation of the composite cathode in lithium–sulfur batteries. More... »

PAGES

17921-17930

References to SciGraph publications

  • 2015-07-21. N-doped carbon nanotubes as cathode material in Li–S batteries in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2015-03-05. Electrocatalysis of Lithium Polysulfides: Current Collectors as Electrodes in Li/S Battery Configuration in SCIENTIFIC REPORTS
  • 2018-05-22. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries in NANO RESEARCH
  • 2018-02-02. In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries in NANO RESEARCH
  • 2017-01-27. Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7 in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2016-09-08. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes in NATURE ENERGY
  • 2014-08-26. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries in NATURE COMMUNICATIONS
  • 2011-12-15. Li–O2 and Li–S batteries with high energy storage in NATURE MATERIALS
  • 2017-03-03. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries in NATURE COMMUNICATIONS
  • 2017-03-01. Gaseous-phase, silica-coated sulfur particles as a cathode material for high-performance lithium/sulfur batteries in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2017-09-06. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage in NATURE COMMUNICATIONS
  • 2008-11-09. A metal-free polymeric photocatalyst for hydrogen production from water under visible light in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10854-018-9906-2

    DOI

    http://dx.doi.org/10.1007/s10854-018-9906-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106281082


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.440785.a", 
              "name": [
                "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Shanshan", 
            "id": "sg:person.010544252457.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544252457.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.440785.a", 
              "name": [
                "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xue", 
            "givenName": "Sikang", 
            "id": "sg:person.010146650277.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146650277.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.440785.a", 
              "name": [
                "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Sihuang", 
            "id": "sg:person.011354342364.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011354342364.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.440785.a", 
              "name": [
                "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jing", 
            "givenName": "Maoxiang", 
            "id": "sg:person.01162236364.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.440785.a", 
              "name": [
                "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qian", 
            "givenName": "Xinye", 
            "id": "sg:person.013417377251.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417377251.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.495316.c", 
              "name": [
                "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
                "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shen", 
            "givenName": "Xiangqian", 
            "id": "sg:person.0601655670.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.495316.c", 
              "name": [
                "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Tianbao", 
            "id": "sg:person.012113453147.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113453147.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.495316.c", 
              "name": [
                "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yanhua", 
            "id": "sg:person.012220036164.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220036164.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41467-017-00537-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091456744", 
              "https://doi.org/10.1038/s41467-017-00537-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-017-6410-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074244258", 
              "https://doi.org/10.1007/s10854-017-6410-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020907974", 
              "https://doi.org/10.1038/ncomms5759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2016.132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048526919", 
              "https://doi.org/10.1038/nenergy.2016.132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-017-1791-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091404587", 
              "https://doi.org/10.1007/s12274-017-1791-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029037852", 
              "https://doi.org/10.1038/nmat3191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-018-2023-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101384856", 
              "https://doi.org/10.1007/s12274-018-2023-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020414078", 
              "https://doi.org/10.1038/srep08763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030051014", 
              "https://doi.org/10.1038/nmat2317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-015-3441-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010832117", 
              "https://doi.org/10.1007/s10854-015-3441-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-017-6620-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084027440", 
              "https://doi.org/10.1007/s10854-017-6620-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128859", 
              "https://doi.org/10.1038/ncomms14627"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08-21", 
        "datePublishedReg": "2018-08-21", 
        "description": "Graphitic carbon nitride (g-C3N4) was produced by the direct thermal-pyrolysis of urea at different temperatures without additive assistance. The physical properties of porous g-C3N4 were characterized by various measurement methods: X-ray diffraction (XRD), Brunauer\u2013Emmett\u2013Teller (BET) surface area measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ay photoelectron spectroscopy (XPS). The effect of thermal-pyrolysis temperature on electrochemical behaviors of was researched as the sulfur matrices in lithium\u2013sulfur batteries. The g-C3N4 prepared at 550\u00a0\u00b0C with sulfur matrix exhibits the superior electrochemical performances. As the result, the sulfur/CN-550 composite cathode exhibits a high initial discharge capacity of 1262.1\u00a0mAh\u00a0g\u22121 and delivers a specific capacity of 605.4\u00a0mAh\u00a0g\u22121 over 500 cycles at 0.39\u00a0mA\u00a0cm\u22122. The excellent electrochemical behavior of the g-C3N4 could be ascribed to the effective utilization of sulfur and the combination of polysulfides dissolution through physical and chemical interactions to achieve long-term circulation of the composite cathode in lithium\u2013sulfur batteries.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10854-018-9906-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8262402", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136825", 
            "issn": [
              "0957-4522", 
              "1573-482X"
            ], 
            "name": "Journal of Materials Science: Materials in Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "20", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "lithium-sulfur batteries", 
          "graphitic carbon nitride", 
          "electrochemical behavior", 
          "composite cathode", 
          "carbon nitride", 
          "transmission electron microscopy", 
          "sulfur matrix", 
          "high initial discharge capacity", 
          "Teller (BET) surface area measurements", 
          "superior electrochemical performance", 
          "excellent electrochemical behavior", 
          "initial discharge capacity", 
          "Brunauer\u2013Emmett", 
          "surface area measurements", 
          "electron microscopy", 
          "additive assistance", 
          "polysulfide dissolution", 
          "electrochemical performance", 
          "specific capacity", 
          "discharge capacity", 
          "photoelectron spectroscopy", 
          "chemical interaction", 
          "ray diffraction", 
          "C3N4", 
          "area measurements", 
          "cathode", 
          "batteries", 
          "different temperatures", 
          "physical properties", 
          "long-term circulation", 
          "microscopy", 
          "nitride", 
          "spectroscopy", 
          "temperature", 
          "diffraction", 
          "urea", 
          "sulfur", 
          "synthesis", 
          "dissolution", 
          "effective utilization", 
          "matrix", 
          "properties", 
          "capacity", 
          "behavior", 
          "interaction", 
          "applications", 
          "measurements", 
          "method", 
          "cycle", 
          "measurement method", 
          "performance", 
          "utilization", 
          "effect", 
          "combination", 
          "results", 
          "assistance", 
          "circulation", 
          "thermal-pyrolysis temperature", 
          "sulfur/CN-550 composite cathode", 
          "CN-550 composite cathode", 
          "different thermal-pyrolysis temperature"
        ], 
        "name": "Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium\u2013sulfur batteries", 
        "pagination": "17921-17930", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106281082"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10854-018-9906-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10854-018-9906-2", 
          "https://app.dimensions.ai/details/publication/pub.1106281082"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_779.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10854-018-9906-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-9906-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-9906-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-9906-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-9906-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    226 TRIPLES      22 PREDICATES      99 URIs      78 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10854-018-9906-2 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 anzsrc-for:0912
    4 schema:author N15ae71bc5d6443b1bd26bb59c6ac3af6
    5 schema:citation sg:pub.10.1007/s10854-015-3441-1
    6 sg:pub.10.1007/s10854-017-6410-z
    7 sg:pub.10.1007/s10854-017-6620-4
    8 sg:pub.10.1007/s12274-017-1791-0
    9 sg:pub.10.1007/s12274-018-2023-y
    10 sg:pub.10.1038/ncomms14627
    11 sg:pub.10.1038/ncomms5759
    12 sg:pub.10.1038/nenergy.2016.132
    13 sg:pub.10.1038/nmat2317
    14 sg:pub.10.1038/nmat3191
    15 sg:pub.10.1038/s41467-017-00537-0
    16 sg:pub.10.1038/srep08763
    17 schema:datePublished 2018-08-21
    18 schema:datePublishedReg 2018-08-21
    19 schema:description Graphitic carbon nitride (g-C3N4) was produced by the direct thermal-pyrolysis of urea at different temperatures without additive assistance. The physical properties of porous g-C3N4 were characterized by various measurement methods: X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ay photoelectron spectroscopy (XPS). The effect of thermal-pyrolysis temperature on electrochemical behaviors of was researched as the sulfur matrices in lithium–sulfur batteries. The g-C3N4 prepared at 550 °C with sulfur matrix exhibits the superior electrochemical performances. As the result, the sulfur/CN-550 composite cathode exhibits a high initial discharge capacity of 1262.1 mAh g−1 and delivers a specific capacity of 605.4 mAh g−1 over 500 cycles at 0.39 mA cm−2. The excellent electrochemical behavior of the g-C3N4 could be ascribed to the effective utilization of sulfur and the combination of polysulfides dissolution through physical and chemical interactions to achieve long-term circulation of the composite cathode in lithium–sulfur batteries.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N33654dce184d4ffba2c02b35295a311f
    24 N6fcd82e9bc014a31b6bd75fb65ea6e75
    25 sg:journal.1136825
    26 schema:keywords Brunauer–Emmett
    27 C3N4
    28 CN-550 composite cathode
    29 Teller (BET) surface area measurements
    30 additive assistance
    31 applications
    32 area measurements
    33 assistance
    34 batteries
    35 behavior
    36 capacity
    37 carbon nitride
    38 cathode
    39 chemical interaction
    40 circulation
    41 combination
    42 composite cathode
    43 cycle
    44 different temperatures
    45 different thermal-pyrolysis temperature
    46 diffraction
    47 discharge capacity
    48 dissolution
    49 effect
    50 effective utilization
    51 electrochemical behavior
    52 electrochemical performance
    53 electron microscopy
    54 excellent electrochemical behavior
    55 graphitic carbon nitride
    56 high initial discharge capacity
    57 initial discharge capacity
    58 interaction
    59 lithium-sulfur batteries
    60 long-term circulation
    61 matrix
    62 measurement method
    63 measurements
    64 method
    65 microscopy
    66 nitride
    67 performance
    68 photoelectron spectroscopy
    69 physical properties
    70 polysulfide dissolution
    71 properties
    72 ray diffraction
    73 results
    74 specific capacity
    75 spectroscopy
    76 sulfur
    77 sulfur matrix
    78 sulfur/CN-550 composite cathode
    79 superior electrochemical performance
    80 surface area measurements
    81 synthesis
    82 temperature
    83 thermal-pyrolysis temperature
    84 transmission electron microscopy
    85 urea
    86 utilization
    87 schema:name Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries
    88 schema:pagination 17921-17930
    89 schema:productId N72f9c3d126134eebb9caaf2ddfb04adf
    90 Nfa6bc13db99e4b9888feac85e03b4c63
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106281082
    92 https://doi.org/10.1007/s10854-018-9906-2
    93 schema:sdDatePublished 2021-12-01T19:40
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher Nef9661964d094f73a3abcce7d0ee907f
    96 schema:url https://doi.org/10.1007/s10854-018-9906-2
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N0940698369164181be3c4ed2a60a3e40 rdf:first sg:person.01162236364.13
    101 rdf:rest N096419a25c9e4fcb9e4c063f1652ca6f
    102 N096419a25c9e4fcb9e4c063f1652ca6f rdf:first sg:person.013417377251.44
    103 rdf:rest Nc4778fa015a14d2fb449a7e300711bee
    104 N15ae71bc5d6443b1bd26bb59c6ac3af6 rdf:first sg:person.010544252457.22
    105 rdf:rest N64ecb2624a4d4788905f8c8af0a89924
    106 N33654dce184d4ffba2c02b35295a311f schema:issueNumber 20
    107 rdf:type schema:PublicationIssue
    108 N4b4c61ea296b45cbb0229f2d18ce57ba rdf:first sg:person.012220036164.25
    109 rdf:rest rdf:nil
    110 N64ecb2624a4d4788905f8c8af0a89924 rdf:first sg:person.010146650277.03
    111 rdf:rest Na5803c4e762e4ad987fe3d21c36120b0
    112 N6fcd82e9bc014a31b6bd75fb65ea6e75 schema:volumeNumber 29
    113 rdf:type schema:PublicationVolume
    114 N72f9c3d126134eebb9caaf2ddfb04adf schema:name dimensions_id
    115 schema:value pub.1106281082
    116 rdf:type schema:PropertyValue
    117 Na5803c4e762e4ad987fe3d21c36120b0 rdf:first sg:person.011354342364.26
    118 rdf:rest N0940698369164181be3c4ed2a60a3e40
    119 Nb645c93134ba4617a15faff888adf3ff rdf:first sg:person.012113453147.61
    120 rdf:rest N4b4c61ea296b45cbb0229f2d18ce57ba
    121 Nc4778fa015a14d2fb449a7e300711bee rdf:first sg:person.0601655670.06
    122 rdf:rest Nb645c93134ba4617a15faff888adf3ff
    123 Nef9661964d094f73a3abcce7d0ee907f schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 Nfa6bc13db99e4b9888feac85e03b4c63 schema:name doi
    126 schema:value 10.1007/s10854-018-9906-2
    127 rdf:type schema:PropertyValue
    128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Engineering
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Electrical and Electronic Engineering
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Materials Engineering
    136 rdf:type schema:DefinedTerm
    137 sg:grant.8262402 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-018-9906-2
    138 rdf:type schema:MonetaryGrant
    139 sg:journal.1136825 schema:issn 0957-4522
    140 1573-482X
    141 schema:name Journal of Materials Science: Materials in Electronics
    142 schema:publisher Springer Nature
    143 rdf:type schema:Periodical
    144 sg:person.010146650277.03 schema:affiliation grid-institutes:grid.440785.a
    145 schema:familyName Xue
    146 schema:givenName Sikang
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146650277.03
    148 rdf:type schema:Person
    149 sg:person.010544252457.22 schema:affiliation grid-institutes:grid.440785.a
    150 schema:familyName Yao
    151 schema:givenName Shanshan
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544252457.22
    153 rdf:type schema:Person
    154 sg:person.011354342364.26 schema:affiliation grid-institutes:grid.440785.a
    155 schema:familyName Peng
    156 schema:givenName Sihuang
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011354342364.26
    158 rdf:type schema:Person
    159 sg:person.01162236364.13 schema:affiliation grid-institutes:grid.440785.a
    160 schema:familyName Jing
    161 schema:givenName Maoxiang
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13
    163 rdf:type schema:Person
    164 sg:person.012113453147.61 schema:affiliation grid-institutes:grid.495316.c
    165 schema:familyName Li
    166 schema:givenName Tianbao
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113453147.61
    168 rdf:type schema:Person
    169 sg:person.012220036164.25 schema:affiliation grid-institutes:grid.495316.c
    170 schema:familyName Wang
    171 schema:givenName Yanhua
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220036164.25
    173 rdf:type schema:Person
    174 sg:person.013417377251.44 schema:affiliation grid-institutes:grid.440785.a
    175 schema:familyName Qian
    176 schema:givenName Xinye
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417377251.44
    178 rdf:type schema:Person
    179 sg:person.0601655670.06 schema:affiliation grid-institutes:grid.495316.c
    180 schema:familyName Shen
    181 schema:givenName Xiangqian
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06
    183 rdf:type schema:Person
    184 sg:pub.10.1007/s10854-015-3441-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010832117
    185 https://doi.org/10.1007/s10854-015-3441-1
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10854-017-6410-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1074244258
    188 https://doi.org/10.1007/s10854-017-6410-z
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10854-017-6620-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027440
    191 https://doi.org/10.1007/s10854-017-6620-4
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s12274-017-1791-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091404587
    194 https://doi.org/10.1007/s12274-017-1791-0
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s12274-018-2023-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1101384856
    197 https://doi.org/10.1007/s12274-018-2023-y
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ncomms14627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128859
    200 https://doi.org/10.1038/ncomms14627
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ncomms5759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020907974
    203 https://doi.org/10.1038/ncomms5759
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nenergy.2016.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048526919
    206 https://doi.org/10.1038/nenergy.2016.132
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nmat2317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030051014
    209 https://doi.org/10.1038/nmat2317
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nmat3191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029037852
    212 https://doi.org/10.1038/nmat3191
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/s41467-017-00537-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091456744
    215 https://doi.org/10.1038/s41467-017-00537-0
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/srep08763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020414078
    218 https://doi.org/10.1038/srep08763
    219 rdf:type schema:CreativeWork
    220 grid-institutes:grid.440785.a schema:alternateName Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People’s Republic of China
    221 schema:name Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People’s Republic of China
    222 rdf:type schema:Organization
    223 grid-institutes:grid.495316.c schema:alternateName Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People’s Republic of China
    224 schema:name Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People’s Republic of China
    225 Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People’s Republic of China
    226 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...