Co-precipitation synthesis, structural characterization and fluorescent analysis of Nd3+ doped Y3Al5O12 and Yb3Al5O12 nanocrystallines View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Taiping Xie, Li Zhang, Jiankang Wang, Taiping Xie, Quanxi Zhu, Xiaodong Zhang

ABSTRACT

Nd3+, as one of the most important rare-earth (RE) ion, has been playing a significant role in pumping the infrared (IR) light. Depending on different synthesis strategies, doping content, and crystal lattice, however, Nd3+ always shows different IR intensity. In this work, we have fabricated two series of Nd3+ doped nanocrystallines that share with the same crystal structure, i.e., Nd3+ doped Y3Al5O12 (YAG) and Yb3Al5O12 (YbAG), through using the co-precipitation synthesis method while the ammonium bicarbonate as the precipitant agent. To reveal the influence of the synthesis conditions (e.g., synthetic temperature and pH value) on structural and florescent properties of Nd3+ doped YAG and YbAG nanocrystallines, several techniques have been performed in this work, including the X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric-differential scanning calorimeter (TG-DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman and florescent spectroscopy spectra. Our results reveal that the optimal synthesis conditions are 1000 °C and pH 8 for YAG:Nd3+ and 900 °C and pH 9 for YbAG:Nd3+. Moreover, we also find the optimal Nd3+ doping contents of the YAG:Nd3+ and YbAG:Nd3+ nanocrystallines are 3% and 1.5%, which correspond to the strongest fluorescent intensity upon excitation at 808 nm and 980 nm, respectively. Typically, we reveal that substitution of Y with Yb ions could allow to enhancing the Nd3+ fluorescent intensity upon excitation at 808 nm. This work provides new insights into designing excellent crystal materials that can allow us to realize the laser transparent ceramics. More... »

PAGES

2299-2308

References to SciGraph publications

  • 2008-12. Ceramic laser materials in NATURE PHOTONICS
  • 2016-03. Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) nanophosphors in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2004-07. 110 W ceramic Nd3+ : Y3Al5O12 laser in APPLIED PHYSICS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10854-018-0502-2

    DOI

    http://dx.doi.org/10.1007/s10854-018-0502-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110448781


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yangtze Normal University", 
              "id": "https://www.grid.ac/institutes/grid.449845.0", 
              "name": [
                "Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, 408100, Chongqing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Taiping", 
            "id": "sg:person.012067741117.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067741117.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.495321.8", 
              "name": [
                "Chongqing Academy of Metrology and Quality Inspection, 401123, Chongqing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Li", 
            "id": "sg:person.014074106570.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074106570.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yangtze Normal University", 
              "id": "https://www.grid.ac/institutes/grid.449845.0", 
              "name": [
                "Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, 408100, Chongqing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jiankang", 
            "id": "sg:person.010336654111.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010336654111.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Environmental Engineering, Zhejiang University, 310058, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Taiping", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yangtze Normal University", 
              "id": "https://www.grid.ac/institutes/grid.449845.0", 
              "name": [
                "Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, 408100, Chongqing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Quanxi", 
            "id": "sg:person.012767552367.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012767552367.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yangtze Normal University", 
              "id": "https://www.grid.ac/institutes/grid.449845.0", 
              "name": [
                "Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, 408100, Chongqing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiaodong", 
            "id": "sg:person.016164255322.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016164255322.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.crhy.2007.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000221876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b809132n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006688176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-015-4020-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009707587", 
              "https://doi.org/10.1007/s10854-015-4020-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119241966.ch10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013078619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pssc.201300018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013754546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2614(89)87552-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013973257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0567739476001551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028010813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3093(01)00411-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031678176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-8388(02)00083-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031972764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-8388(02)00083-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031972764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeurceramsoc.2003.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032096087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optmat.2008.04.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032273949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0016-7037(52)90004-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032710445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0016-7037(52)90004-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032710445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0248(99)00450-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033806408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00340-004-1511-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034310289", 
              "https://doi.org/10.1007/s00340-004-1511-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-3467(02)00335-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034396510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-3467(02)00335-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034396510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pmatsci.2016.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034651702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jssc.2006.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036653293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0030-4018(01)01148-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036783866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.materresbull.2014.11.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037635119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeurceramsoc.2015.02.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042765994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optmat.2004.10.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045168131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2008.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045644449", 
              "https://doi.org/10.1038/nphoton.2008.243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3cs60060b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047516542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/6/4/011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048512516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/19/7/075603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049942488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optmat.2006.01.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052105705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.5b08315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055874528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp4081965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056097207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.119210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057683398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1714383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057782057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1753940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057814385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.321723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057919846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3580475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057978581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.90395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058130534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3.236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061147317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josab.19.001794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065170178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.14.000024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065212020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.28.000432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065220869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.201701842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091220731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.chemrev.7b00284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100775798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.chemrev.7b00284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100775798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.chemrev.7b00284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100775798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ceramint.2018.10.262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108004952"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "Nd3+, as one of the most important rare-earth (RE) ion, has been playing a significant role in pumping the infrared (IR) light. Depending on different synthesis strategies, doping content, and crystal lattice, however, Nd3+ always shows different IR intensity. In this work, we have fabricated two series of Nd3+ doped nanocrystallines that share with the same crystal structure, i.e., Nd3+ doped Y3Al5O12 (YAG) and Yb3Al5O12 (YbAG), through using the co-precipitation synthesis method while the ammonium bicarbonate as the precipitant agent. To reveal the influence of the synthesis conditions (e.g., synthetic temperature and pH value) on structural and florescent properties of Nd3+ doped YAG and YbAG nanocrystallines, several techniques have been performed in this work, including the X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric-differential scanning calorimeter (TG-DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman and florescent spectroscopy spectra. Our results reveal that the optimal synthesis conditions are 1000 \u00b0C and pH 8 for YAG:Nd3+ and 900 \u00b0C and pH 9 for YbAG:Nd3+. Moreover, we also find the optimal Nd3+ doping contents of the YAG:Nd3+ and YbAG:Nd3+ nanocrystallines are 3% and 1.5%, which correspond to the strongest fluorescent intensity upon excitation at 808 nm and 980 nm, respectively. Typically, we reveal that substitution of Y with Yb ions could allow to enhancing the Nd3+ fluorescent intensity upon excitation at 808 nm. This work provides new insights into designing excellent crystal materials that can allow us to realize the laser transparent ceramics.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10854-018-0502-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136825", 
            "issn": [
              "0957-4522", 
              "1573-482X"
            ], 
            "name": "Journal of Materials Science: Materials in Electronics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "name": "Co-precipitation synthesis, structural characterization and fluorescent analysis of Nd3+ doped Y3Al5O12 and Yb3Al5O12 nanocrystallines", 
        "pagination": "2299-2308", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "54b93e149b89cbe3a0b869aee47b22c5530a291dd32956dc8a3e262f44be2d07"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10854-018-0502-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110448781"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10854-018-0502-2", 
          "https://app.dimensions.ai/details/publication/pub.1110448781"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54298_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10854-018-0502-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0502-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0502-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0502-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0502-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    227 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10854-018-0502-2 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N281a53d8818944c7b2084458e97e0a3b
    4 schema:citation sg:pub.10.1007/s00340-004-1511-9
    5 sg:pub.10.1007/s10854-015-4020-1
    6 sg:pub.10.1038/nphoton.2008.243
    7 https://doi.org/10.1002/9781119241966.ch10
    8 https://doi.org/10.1002/adfm.201701842
    9 https://doi.org/10.1002/pssc.201300018
    10 https://doi.org/10.1016/0009-2614(89)87552-9
    11 https://doi.org/10.1016/0016-7037(52)90004-5
    12 https://doi.org/10.1016/j.ceramint.2018.10.262
    13 https://doi.org/10.1016/j.crhy.2007.09.010
    14 https://doi.org/10.1016/j.jeurceramsoc.2003.09.001
    15 https://doi.org/10.1016/j.jeurceramsoc.2015.02.014
    16 https://doi.org/10.1016/j.jssc.2006.12.001
    17 https://doi.org/10.1016/j.materresbull.2014.11.033
    18 https://doi.org/10.1016/j.optmat.2004.10.034
    19 https://doi.org/10.1016/j.optmat.2006.01.027
    20 https://doi.org/10.1016/j.optmat.2008.04.007
    21 https://doi.org/10.1016/j.pmatsci.2016.09.007
    22 https://doi.org/10.1016/s0022-0248(99)00450-9
    23 https://doi.org/10.1016/s0022-3093(01)00411-2
    24 https://doi.org/10.1016/s0030-4018(01)01148-8
    25 https://doi.org/10.1016/s0925-3467(02)00335-x
    26 https://doi.org/10.1016/s0925-8388(02)00083-x
    27 https://doi.org/10.1021/acs.chemrev.7b00284
    28 https://doi.org/10.1021/jacs.5b08315
    29 https://doi.org/10.1021/jp4081965
    30 https://doi.org/10.1039/b809132n
    31 https://doi.org/10.1039/c3cs60060b
    32 https://doi.org/10.1063/1.119210
    33 https://doi.org/10.1063/1.1714383
    34 https://doi.org/10.1063/1.1753940
    35 https://doi.org/10.1063/1.321723
    36 https://doi.org/10.1063/1.3580475
    37 https://doi.org/10.1063/1.90395
    38 https://doi.org/10.1088/0953-8984/6/4/011
    39 https://doi.org/10.1088/0957-4484/19/7/075603
    40 https://doi.org/10.1107/s0567739476001551
    41 https://doi.org/10.1109/3.236
    42 https://doi.org/10.1364/josab.19.001794
    43 https://doi.org/10.1364/ol.14.000024
    44 https://doi.org/10.1364/ol.28.000432
    45 schema:datePublished 2019-02
    46 schema:datePublishedReg 2019-02-01
    47 schema:description Nd3+, as one of the most important rare-earth (RE) ion, has been playing a significant role in pumping the infrared (IR) light. Depending on different synthesis strategies, doping content, and crystal lattice, however, Nd3+ always shows different IR intensity. In this work, we have fabricated two series of Nd3+ doped nanocrystallines that share with the same crystal structure, i.e., Nd3+ doped Y3Al5O12 (YAG) and Yb3Al5O12 (YbAG), through using the co-precipitation synthesis method while the ammonium bicarbonate as the precipitant agent. To reveal the influence of the synthesis conditions (e.g., synthetic temperature and pH value) on structural and florescent properties of Nd3+ doped YAG and YbAG nanocrystallines, several techniques have been performed in this work, including the X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric-differential scanning calorimeter (TG-DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman and florescent spectroscopy spectra. Our results reveal that the optimal synthesis conditions are 1000 °C and pH 8 for YAG:Nd3+ and 900 °C and pH 9 for YbAG:Nd3+. Moreover, we also find the optimal Nd3+ doping contents of the YAG:Nd3+ and YbAG:Nd3+ nanocrystallines are 3% and 1.5%, which correspond to the strongest fluorescent intensity upon excitation at 808 nm and 980 nm, respectively. Typically, we reveal that substitution of Y with Yb ions could allow to enhancing the Nd3+ fluorescent intensity upon excitation at 808 nm. This work provides new insights into designing excellent crystal materials that can allow us to realize the laser transparent ceramics.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree false
    51 schema:isPartOf N0a702e8563be4955b476dd169f5cffef
    52 N55b3547ff5dd425ca02094de329861df
    53 sg:journal.1136825
    54 schema:name Co-precipitation synthesis, structural characterization and fluorescent analysis of Nd3+ doped Y3Al5O12 and Yb3Al5O12 nanocrystallines
    55 schema:pagination 2299-2308
    56 schema:productId N1d9f350de472473d8fa78f8c08abd132
    57 N2022d6bad6bb44d68141bb36bcf85ed4
    58 N5b824547ce58431fafb723e57b28ed32
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110448781
    60 https://doi.org/10.1007/s10854-018-0502-2
    61 schema:sdDatePublished 2019-04-11T10:16
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher Nc433658fc3c54f9793a97b2e20fafc3d
    64 schema:url https://link.springer.com/10.1007%2Fs10854-018-0502-2
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N08a5a512027b47c0811c6a7934c2186f rdf:first sg:person.012767552367.28
    69 rdf:rest Ndc718fe9e1ef49dc93e339b1ce952f86
    70 N0a702e8563be4955b476dd169f5cffef schema:issueNumber 3
    71 rdf:type schema:PublicationIssue
    72 N1d9f350de472473d8fa78f8c08abd132 schema:name dimensions_id
    73 schema:value pub.1110448781
    74 rdf:type schema:PropertyValue
    75 N2022d6bad6bb44d68141bb36bcf85ed4 schema:name readcube_id
    76 schema:value 54b93e149b89cbe3a0b869aee47b22c5530a291dd32956dc8a3e262f44be2d07
    77 rdf:type schema:PropertyValue
    78 N281a53d8818944c7b2084458e97e0a3b rdf:first sg:person.012067741117.59
    79 rdf:rest N329fd34f6f5a4d22842c10df030c9087
    80 N329fd34f6f5a4d22842c10df030c9087 rdf:first sg:person.014074106570.56
    81 rdf:rest N5c7c3ba7c0014fc6a1f225ee5bf10aff
    82 N55b3547ff5dd425ca02094de329861df schema:volumeNumber 30
    83 rdf:type schema:PublicationVolume
    84 N5b824547ce58431fafb723e57b28ed32 schema:name doi
    85 schema:value 10.1007/s10854-018-0502-2
    86 rdf:type schema:PropertyValue
    87 N5c7c3ba7c0014fc6a1f225ee5bf10aff rdf:first sg:person.010336654111.87
    88 rdf:rest N809a9b8ed52c4fd1a9c226b4d8da19e6
    89 N809a9b8ed52c4fd1a9c226b4d8da19e6 rdf:first Nbb14f3b6983147d1b6e6a31b685010c8
    90 rdf:rest N08a5a512027b47c0811c6a7934c2186f
    91 Nbb14f3b6983147d1b6e6a31b685010c8 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    92 schema:familyName Xie
    93 schema:givenName Taiping
    94 rdf:type schema:Person
    95 Nc433658fc3c54f9793a97b2e20fafc3d schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 Ndc718fe9e1ef49dc93e339b1ce952f86 rdf:first sg:person.016164255322.05
    98 rdf:rest rdf:nil
    99 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Chemical Sciences
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Physical Chemistry (incl. Structural)
    104 rdf:type schema:DefinedTerm
    105 sg:journal.1136825 schema:issn 0957-4522
    106 1573-482X
    107 schema:name Journal of Materials Science: Materials in Electronics
    108 rdf:type schema:Periodical
    109 sg:person.010336654111.87 schema:affiliation https://www.grid.ac/institutes/grid.449845.0
    110 schema:familyName Wang
    111 schema:givenName Jiankang
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010336654111.87
    113 rdf:type schema:Person
    114 sg:person.012067741117.59 schema:affiliation https://www.grid.ac/institutes/grid.449845.0
    115 schema:familyName Xie
    116 schema:givenName Taiping
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067741117.59
    118 rdf:type schema:Person
    119 sg:person.012767552367.28 schema:affiliation https://www.grid.ac/institutes/grid.449845.0
    120 schema:familyName Zhu
    121 schema:givenName Quanxi
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012767552367.28
    123 rdf:type schema:Person
    124 sg:person.014074106570.56 schema:affiliation https://www.grid.ac/institutes/grid.495321.8
    125 schema:familyName Zhang
    126 schema:givenName Li
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074106570.56
    128 rdf:type schema:Person
    129 sg:person.016164255322.05 schema:affiliation https://www.grid.ac/institutes/grid.449845.0
    130 schema:familyName Zhang
    131 schema:givenName Xiaodong
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016164255322.05
    133 rdf:type schema:Person
    134 sg:pub.10.1007/s00340-004-1511-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034310289
    135 https://doi.org/10.1007/s00340-004-1511-9
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s10854-015-4020-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009707587
    138 https://doi.org/10.1007/s10854-015-4020-1
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/nphoton.2008.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045644449
    141 https://doi.org/10.1038/nphoton.2008.243
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1002/9781119241966.ch10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013078619
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1002/adfm.201701842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091220731
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1002/pssc.201300018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013754546
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/0009-2614(89)87552-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013973257
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/0016-7037(52)90004-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032710445
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.ceramint.2018.10.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108004952
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.crhy.2007.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000221876
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.jeurceramsoc.2003.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096087
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.jeurceramsoc.2015.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042765994
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.jssc.2006.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036653293
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.materresbull.2014.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037635119
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.optmat.2004.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045168131
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.optmat.2006.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052105705
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.optmat.2008.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032273949
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.pmatsci.2016.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034651702
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0022-0248(99)00450-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033806408
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0022-3093(01)00411-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031678176
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0030-4018(01)01148-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036783866
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/s0925-3467(02)00335-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034396510
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/s0925-8388(02)00083-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031972764
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/acs.chemrev.7b00284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100775798
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1021/jacs.5b08315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055874528
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1021/jp4081965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056097207
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1039/b809132n schema:sameAs https://app.dimensions.ai/details/publication/pub.1006688176
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1039/c3cs60060b schema:sameAs https://app.dimensions.ai/details/publication/pub.1047516542
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1063/1.119210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057683398
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1063/1.1714383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057782057
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1063/1.1753940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057814385
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1063/1.321723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057919846
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1063/1.3580475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057978581
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1063/1.90395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058130534
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1088/0953-8984/6/4/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048512516
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1088/0957-4484/19/7/075603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049942488
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1107/s0567739476001551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028010813
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1109/3.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061147317
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1364/josab.19.001794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065170178
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1364/ol.14.000024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065212020
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1364/ol.28.000432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220869
    218 rdf:type schema:CreativeWork
    219 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
    220 schema:name Department of Environmental Engineering, Zhejiang University, 310058, Hangzhou, China
    221 rdf:type schema:Organization
    222 https://www.grid.ac/institutes/grid.449845.0 schema:alternateName Yangtze Normal University
    223 schema:name Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, 408100, Chongqing, China
    224 rdf:type schema:Organization
    225 https://www.grid.ac/institutes/grid.495321.8 schema:alternateName Chongqing Metrology Quality Inspection and Research Institute
    226 schema:name Chongqing Academy of Metrology and Quality Inspection, 401123, Chongqing, China
    227 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...