Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-30

AUTHORS

Rahim Mohammad-Rezaei, Sahand Soroodian, Ghadir Esmaeili

ABSTRACT

pH monitoring in micro volume samples is required for environmental and clinical analysis. Low cost, miniaturized and stable metal oxide based pH sensors could be a suitable alternative to glass electrodes. In this study, a sensitive potentiometric solid state pH sensor based on manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode (MnO2/GPLE) was reported. The prepared MnO2/GPLE was carefully characterized by SEM, XRD and electrochemical techniques. To miniaturize the prepared pH sensor, a stainless steel 304 needle was used as a reference electrode. Selectivity, response time, stability and reproducibility of the miniaturized pH sensor were studied and compared with conventional glass pH electrode. According to experimental results, a near-Nernstian slope of − 57.051 mV/pH and linearity over the pH range of 1.5–12.5 were obtained for the developed MnO2/GPLE pH sensor. The prepared sensor represented high ion selectivity to mono-valence and multi-valence ions with -logKA,BPot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- \log K_{{{\text{A}},{\text{B}}}}^{{{\text{Pot}}}}$$\end{document} values around 6.49. A fast response time of 20 s in acidic medium and 60 s in alkaline medium, long-term stability and reproducibility in 2 months, the simplicity of fabrication, low cost and accuracy makes this sensor as a suitable choice for rapid pH recording in micro volume samples. The MnO2/GPLE pH sensor was successfully used for the pH monitoring of human tear, human blood, saliva, apple juice, lemon juice, milk, and vinegar samples with satisfactory results. More... »

PAGES

1998-2005

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-018-0471-5

DOI

http://dx.doi.org/10.1007/s10854-018-0471-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110281227


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Electrochemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Electrochemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammad-Rezaei", 
        "givenName": "Rahim", 
        "id": "sg:person.013745263366.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013745263366.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrochemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Electrochemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soroodian", 
        "givenName": "Sahand", 
        "id": "sg:person.014677014174.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014677014174.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrochemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Electrochemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esmaeili", 
        "givenName": "Ghadir", 
        "id": "sg:person.013142470667.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142470667.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10008-008-0523-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045103092", 
          "https://doi.org/10.1007/s10008-008-0523-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-018-2809-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103849165", 
          "https://doi.org/10.1007/s00604-018-2809-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-015-2474-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006467969", 
          "https://doi.org/10.1007/s00542-015-2474-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-30", 
    "datePublishedReg": "2018-11-30", 
    "description": "AbstractpH monitoring in micro volume samples is required for environmental and clinical analysis. Low cost, miniaturized and stable metal oxide based pH sensors could be a suitable alternative to glass electrodes. In this study, a sensitive potentiometric solid state pH sensor based on manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode (MnO2/GPLE) was reported. The prepared MnO2/GPLE was carefully characterized by SEM, XRD and electrochemical techniques. To miniaturize the prepared pH sensor, a stainless steel 304 needle was used as a reference electrode. Selectivity, response time, stability and reproducibility of the miniaturized pH sensor were studied and compared with conventional glass pH electrode. According to experimental results, a near-Nernstian slope of \u2212\u200957.051\u00a0mV/pH and linearity over the pH range of 1.5\u201312.5 were obtained for the developed MnO2/GPLE pH sensor. The prepared sensor represented high ion selectivity to mono-valence and multi-valence ions with -logKA,BPot\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$- \\log K_{{{\\text{A}},{\\text{B}}}}^{{{\\text{Pot}}}}$$\\end{document} values around 6.49. A fast response time of 20\u00a0s in acidic medium and 60\u00a0s in alkaline medium, long-term stability and reproducibility in 2\u00a0months, the simplicity of fabrication, low cost and accuracy makes this sensor as a suitable choice for rapid pH recording in micro volume samples. The MnO2/GPLE pH sensor was successfully used for the pH monitoring of human tear, human blood, saliva, apple juice, lemon juice, milk, and vinegar samples with satisfactory results.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10854-018-0471-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "pencil lead electrode", 
      "manganese oxide nanoparticles", 
      "oxide nanoparticles", 
      "lead electrode", 
      "pH sensor", 
      "near-Nernstian slope", 
      "stable metal oxides", 
      "high ion selectivity", 
      "multi-valence ions", 
      "volume samples", 
      "conventional glass pH electrode", 
      "prepared pH sensor", 
      "long-term stability", 
      "mV/pH", 
      "miniaturized pH sensor", 
      "prepared sensor", 
      "metal oxides", 
      "electrochemical techniques", 
      "alkaline medium", 
      "simplicity of fabrication", 
      "acidic medium", 
      "fast response time", 
      "reference electrode", 
      "glass electrode", 
      "ion selectivity", 
      "electrode", 
      "pH range", 
      "nanoparticles", 
      "glass pH electrode", 
      "low cost", 
      "vinegar samples", 
      "selectivity", 
      "response time", 
      "lemon juice", 
      "stability", 
      "XRD", 
      "pH electrode", 
      "satisfactory results", 
      "ions", 
      "reproducibility", 
      "SEM", 
      "apple juice", 
      "oxide", 
      "sensors", 
      "fabrication", 
      "samples", 
      "clinical analysis", 
      "pH", 
      "human tears", 
      "linearity", 
      "experimental results", 
      "human blood", 
      "suitable alternative", 
      "medium", 
      "suitable choice", 
      "juice", 
      "range", 
      "Rapid", 
      "cost", 
      "simplicity", 
      "technique", 
      "time", 
      "results", 
      "accuracy", 
      "monitoring", 
      "slope", 
      "analysis", 
      "alternative", 
      "milk", 
      "saliva", 
      "study", 
      "needle", 
      "recordings", 
      "choice", 
      "pH monitoring", 
      "tears", 
      "blood", 
      "months", 
      "micro volume samples", 
      "sensitive potentiometric solid state pH sensor", 
      "potentiometric solid state pH sensor", 
      "solid state pH sensor", 
      "state pH sensor", 
      "prepared MnO2/GPLE", 
      "MnO2/GPLE", 
      "GPLE", 
      "stainless steel 304 needle", 
      "steel 304 needle"
    ], 
    "name": "Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor", 
    "pagination": "1998-2005", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110281227"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-018-0471-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-018-0471-5", 
      "https://app.dimensions.ai/details/publication/pub.1110281227"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_767.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10854-018-0471-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0471-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0471-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0471-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0471-5'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      117 URIs      105 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-018-0471-5 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 anzsrc-for:0912
4 schema:author N2a9db426a4284fa1b528bcc259398367
5 schema:citation sg:pub.10.1007/s00542-015-2474-y
6 sg:pub.10.1007/s00604-018-2809-3
7 sg:pub.10.1007/s10008-008-0523-5
8 schema:datePublished 2018-11-30
9 schema:datePublishedReg 2018-11-30
10 schema:description AbstractpH monitoring in micro volume samples is required for environmental and clinical analysis. Low cost, miniaturized and stable metal oxide based pH sensors could be a suitable alternative to glass electrodes. In this study, a sensitive potentiometric solid state pH sensor based on manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode (MnO2/GPLE) was reported. The prepared MnO2/GPLE was carefully characterized by SEM, XRD and electrochemical techniques. To miniaturize the prepared pH sensor, a stainless steel 304 needle was used as a reference electrode. Selectivity, response time, stability and reproducibility of the miniaturized pH sensor were studied and compared with conventional glass pH electrode. According to experimental results, a near-Nernstian slope of − 57.051 mV/pH and linearity over the pH range of 1.5–12.5 were obtained for the developed MnO2/GPLE pH sensor. The prepared sensor represented high ion selectivity to mono-valence and multi-valence ions with -logKA,BPot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- \log K_{{{\text{A}},{\text{B}}}}^{{{\text{Pot}}}}$$\end{document} values around 6.49. A fast response time of 20 s in acidic medium and 60 s in alkaline medium, long-term stability and reproducibility in 2 months, the simplicity of fabrication, low cost and accuracy makes this sensor as a suitable choice for rapid pH recording in micro volume samples. The MnO2/GPLE pH sensor was successfully used for the pH monitoring of human tear, human blood, saliva, apple juice, lemon juice, milk, and vinegar samples with satisfactory results.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N3c2b1103dfb34ce8aab841243be2005f
15 N6c2e8eabd7f5431db98fb973457d8dfa
16 sg:journal.1136825
17 schema:keywords GPLE
18 MnO2/GPLE
19 Rapid
20 SEM
21 XRD
22 accuracy
23 acidic medium
24 alkaline medium
25 alternative
26 analysis
27 apple juice
28 blood
29 choice
30 clinical analysis
31 conventional glass pH electrode
32 cost
33 electrochemical techniques
34 electrode
35 experimental results
36 fabrication
37 fast response time
38 glass electrode
39 glass pH electrode
40 high ion selectivity
41 human blood
42 human tears
43 ion selectivity
44 ions
45 juice
46 lead electrode
47 lemon juice
48 linearity
49 long-term stability
50 low cost
51 mV/pH
52 manganese oxide nanoparticles
53 medium
54 metal oxides
55 micro volume samples
56 milk
57 miniaturized pH sensor
58 monitoring
59 months
60 multi-valence ions
61 nanoparticles
62 near-Nernstian slope
63 needle
64 oxide
65 oxide nanoparticles
66 pH
67 pH electrode
68 pH monitoring
69 pH range
70 pH sensor
71 pencil lead electrode
72 potentiometric solid state pH sensor
73 prepared MnO2/GPLE
74 prepared pH sensor
75 prepared sensor
76 range
77 recordings
78 reference electrode
79 reproducibility
80 response time
81 results
82 saliva
83 samples
84 satisfactory results
85 selectivity
86 sensitive potentiometric solid state pH sensor
87 sensors
88 simplicity
89 simplicity of fabrication
90 slope
91 solid state pH sensor
92 stability
93 stable metal oxides
94 stainless steel 304 needle
95 state pH sensor
96 steel 304 needle
97 study
98 suitable alternative
99 suitable choice
100 tears
101 technique
102 time
103 vinegar samples
104 volume samples
105 schema:name Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor
106 schema:pagination 1998-2005
107 schema:productId N4441fab416af4b86ba0cc684f5582b09
108 N62b23416eb3f45358ba1d0c5809215d0
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110281227
110 https://doi.org/10.1007/s10854-018-0471-5
111 schema:sdDatePublished 2021-12-01T19:41
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher Na385fa8ded854a0fb277986dfda19487
114 schema:url https://doi.org/10.1007/s10854-018-0471-5
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N2a9db426a4284fa1b528bcc259398367 rdf:first sg:person.013745263366.67
119 rdf:rest N68a4ebe46e9349f0abdf8bd35f12db78
120 N3c2b1103dfb34ce8aab841243be2005f schema:volumeNumber 30
121 rdf:type schema:PublicationVolume
122 N4441fab416af4b86ba0cc684f5582b09 schema:name doi
123 schema:value 10.1007/s10854-018-0471-5
124 rdf:type schema:PropertyValue
125 N4a911a7675a840d2b1d9ce2faa7b7dd8 rdf:first sg:person.013142470667.45
126 rdf:rest rdf:nil
127 N62b23416eb3f45358ba1d0c5809215d0 schema:name dimensions_id
128 schema:value pub.1110281227
129 rdf:type schema:PropertyValue
130 N68a4ebe46e9349f0abdf8bd35f12db78 rdf:first sg:person.014677014174.53
131 rdf:rest N4a911a7675a840d2b1d9ce2faa7b7dd8
132 N6c2e8eabd7f5431db98fb973457d8dfa schema:issueNumber 3
133 rdf:type schema:PublicationIssue
134 Na385fa8ded854a0fb277986dfda19487 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
137 schema:name Engineering
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
140 schema:name Electrical and Electronic Engineering
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
143 schema:name Materials Engineering
144 rdf:type schema:DefinedTerm
145 sg:journal.1136825 schema:issn 0957-4522
146 1573-482X
147 schema:name Journal of Materials Science: Materials in Electronics
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.013142470667.45 schema:affiliation grid-institutes:grid.411468.e
151 schema:familyName Esmaeili
152 schema:givenName Ghadir
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142470667.45
154 rdf:type schema:Person
155 sg:person.013745263366.67 schema:affiliation grid-institutes:grid.411468.e
156 schema:familyName Mohammad-Rezaei
157 schema:givenName Rahim
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013745263366.67
159 rdf:type schema:Person
160 sg:person.014677014174.53 schema:affiliation grid-institutes:grid.411468.e
161 schema:familyName Soroodian
162 schema:givenName Sahand
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014677014174.53
164 rdf:type schema:Person
165 sg:pub.10.1007/s00542-015-2474-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006467969
166 https://doi.org/10.1007/s00542-015-2474-y
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00604-018-2809-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103849165
169 https://doi.org/10.1007/s00604-018-2809-3
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s10008-008-0523-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045103092
172 https://doi.org/10.1007/s10008-008-0523-5
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.411468.e schema:alternateName Electrochemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
175 schema:name Electrochemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...