Effect of CuS nanocrystalline particles on counter electrodes of multi-wall carbon nanotubes for QDSCs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Yinan Zhang, Qiming Wang, Di Wang, Wei Zheng

ABSTRACT

CuS nanocrystalline particles are deposited into the acid-treated multi-wall carbon nanotubes (MWCNTs) film on the fluorine-doped tin oxide glass substrate through the successive ionic layer adsorption and reaction combined with spin-coating technology to form MWCNTs/CuS composite counter electrode (CE). The CuS adding amount is changed in different cycles to discuss its effect mechanism on the photoelectric properties of MWCNTs/CuS composite CE based quantum dot sensitized solar cells (QDSCs). The TiO2 photoanodes are prepared by the electrospinning technique with CdS and ZnS as co-sensitizer. QDSCs are assembled with photoanodes, the polysulfide electrolyte and abovementioned CEs. The CEs are characterized by X-ray diffraction, transmission electron microscope and energy dispersed X-ray detector, which verifies CuS nanocrystalline particles are attached to MWCNTs successfully. The photoelectric properties are analyzed by Nyquist, Tafel and J–V curves. The results show that the introduction of CuS nanocrystalline particles can promote reduction rate of polysulfide species and the short circuit current density (Jsc) to improve catalytic activity, leading to a higher power conversion efficiency (PCE). The MWCNTs based CE with deposition CuS in eight cycles exhibits the best photoelectric performance within all CE samples and the electrical conductivity of MWCNTs/8CuS CE is superior to that of Pt CE according to Nyquist and Tafel curve analysis. PCE of QDSCs with MWCNTs/8CuS CE is up to 5.186%, which is a little lower than that of Pt CE (5.250%), but it possesses a higher Jsc value (18.028 mA cm−2) than that of Pt CE (16.057 mA cm−2). The low-cost MWCNTs/CuS composite CE with simple preparation is more suitable than Pt CE for commercial application of QDSCs. More... »

PAGES

1706-1713

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-018-0443-9

DOI

http://dx.doi.org/10.1007/s10854-018-0443-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110226761


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411994.0", 
          "name": [
            "School of Material Science and Engineering, Harbin University of Science and Technology, 150040, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yinan", 
        "id": "sg:person.015167764576.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167764576.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411994.0", 
          "name": [
            "School of Material Science and Engineering, Harbin University of Science and Technology, 150040, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qiming", 
        "id": "sg:person.013002556446.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002556446.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411994.0", 
          "name": [
            "School of Material Science and Engineering, Harbin University of Science and Technology, 150040, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Di", 
        "id": "sg:person.012205176046.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205176046.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National de la Recherche Scientifique", 
          "id": "https://www.grid.ac/institutes/grid.418084.1", 
          "name": [
            "School of Material Science and Engineering, Harbin University of Science and Technology, 150040, Harbin, China", 
            "Centre \u00c9nergie Mat\u00e9riaux et T\u00e9l\u00e9communications, Institut National de la Recherche Scientifique, J3X1S2, Quebec City, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Wei", 
        "id": "sg:person.016562725576.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016562725576.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2013.01.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001802004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-0248(00)00033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004756362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/nanoph-2016-0017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014180693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp806791s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017089021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp806791s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017089021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nantod.2016.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022417601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2004.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024311133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jelechem.2016.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024835176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2014.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025249880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2012.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026161197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2015.05.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028776304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2016.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030264208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2016.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030264208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2016.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030264208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2016.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030264208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asia.201600034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034148901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2013.10.168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035502950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2012.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035735777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm35447k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037402621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5nr03291a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038434346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ta01353h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039580583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2011.11.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039811659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pip.360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040621159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40820-015-0043-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042549921", 
          "https://doi.org/10.1007/s40820-015-0043-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40820-015-0043-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042549921", 
          "https://doi.org/10.1007/s40820-015-0043-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40820-015-0043-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042549921", 
          "https://doi.org/10.1007/s40820-015-0043-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40820-015-0043-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042549921", 
          "https://doi.org/10.1007/s40820-015-0043-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-016-5099-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045038880", 
          "https://doi.org/10.1007/s10854-016-5099-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-016-5099-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045038880", 
          "https://doi.org/10.1007/s10854-016-5099-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr01564e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045690193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm34425d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045936799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10008-011-1541-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049070366", 
          "https://doi.org/10.1007/s10008-011-1541-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2013.12.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049698304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am200838q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055141828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp052768h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056061508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp052768h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056061508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la1019873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056152636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la1019873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056152636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1191462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6nr09916e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083419660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.01.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083762992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.03.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084084562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2017.04.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085201390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2017.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085202494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2017.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100198338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2018.04.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103507956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jphotov.2018.2838444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104999292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-018-9616-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105341843", 
          "https://doi.org/10.1007/s10854-018-9616-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-018-9616-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105341843", 
          "https://doi.org/10.1007/s10854-018-9616-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "CuS nanocrystalline particles are deposited into the acid-treated multi-wall carbon nanotubes (MWCNTs) film on the fluorine-doped tin oxide glass substrate through the successive ionic layer adsorption and reaction combined with spin-coating technology to form MWCNTs/CuS composite counter electrode (CE). The CuS adding amount is changed in different cycles to discuss its effect mechanism on the photoelectric properties of MWCNTs/CuS composite CE based quantum dot sensitized solar cells (QDSCs). The TiO2 photoanodes are prepared by the electrospinning technique with CdS and ZnS as co-sensitizer. QDSCs are assembled with photoanodes, the polysulfide electrolyte and abovementioned CEs. The CEs are characterized by X-ray diffraction, transmission electron microscope and energy dispersed X-ray detector, which verifies CuS nanocrystalline particles are attached to MWCNTs successfully. The photoelectric properties are analyzed by Nyquist, Tafel and J\u2013V curves. The results show that the introduction of CuS nanocrystalline particles can promote reduction rate of polysulfide species and the short circuit current density (Jsc) to improve catalytic activity, leading to a higher power conversion efficiency (PCE). The MWCNTs based CE with deposition CuS in eight cycles exhibits the best photoelectric performance within all CE samples and the electrical conductivity of MWCNTs/8CuS CE is superior to that of Pt CE according to Nyquist and Tafel curve analysis. PCE of QDSCs with MWCNTs/8CuS CE is up to 5.186%, which is a little lower than that of Pt CE (5.250%), but it possesses a higher Jsc value (18.028 mA cm\u22122) than that of Pt CE (16.057 mA cm\u22122). The low-cost MWCNTs/CuS composite CE with simple preparation is more suitable than Pt CE for commercial application of QDSCs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10854-018-0443-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "Effect of CuS nanocrystalline particles on counter electrodes of multi-wall carbon nanotubes for QDSCs", 
    "pagination": "1706-1713", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65c4c35a20c2249789e3ec686576912a3fdb76f9642df9576c46608a2f057bfb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-018-0443-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110226761"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-018-0443-9", 
      "https://app.dimensions.ai/details/publication/pub.1110226761"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45376_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10854-018-0443-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0443-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0443-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0443-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0443-9'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-018-0443-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N21aa75bdda504824afcf1dca84f37284
4 schema:citation sg:pub.10.1007/s10008-011-1541-2
5 sg:pub.10.1007/s10854-016-5099-8
6 sg:pub.10.1007/s10854-018-9616-9
7 sg:pub.10.1007/s40820-015-0043-7
8 https://doi.org/10.1002/asia.201600034
9 https://doi.org/10.1002/pip.360
10 https://doi.org/10.1016/j.apsusc.2017.04.200
11 https://doi.org/10.1016/j.carbon.2012.10.015
12 https://doi.org/10.1016/j.ccr.2004.03.028
13 https://doi.org/10.1016/j.ccr.2016.02.016
14 https://doi.org/10.1016/j.electacta.2013.10.168
15 https://doi.org/10.1016/j.electacta.2013.12.059
16 https://doi.org/10.1016/j.electacta.2015.05.069
17 https://doi.org/10.1016/j.electacta.2018.04.131
18 https://doi.org/10.1016/j.jallcom.2017.03.147
19 https://doi.org/10.1016/j.jelechem.2016.07.037
20 https://doi.org/10.1016/j.jpowsour.2011.11.031
21 https://doi.org/10.1016/j.jpowsour.2012.11.014
22 https://doi.org/10.1016/j.jpowsour.2013.01.116
23 https://doi.org/10.1016/j.nantod.2016.04.005
24 https://doi.org/10.1016/j.rser.2017.01.172
25 https://doi.org/10.1016/j.solener.2014.06.015
26 https://doi.org/10.1016/j.solmat.2017.12.024
27 https://doi.org/10.1016/j.talanta.2017.04.045
28 https://doi.org/10.1016/s0927-0248(00)00033-7
29 https://doi.org/10.1021/am200838q
30 https://doi.org/10.1021/jp052768h
31 https://doi.org/10.1021/jp806791s
32 https://doi.org/10.1021/la1019873
33 https://doi.org/10.1039/c2jm34425d
34 https://doi.org/10.1039/c2jm35447k
35 https://doi.org/10.1039/c3nr01564e
36 https://doi.org/10.1039/c5nr03291a
37 https://doi.org/10.1039/c6nr09916e
38 https://doi.org/10.1039/c6ta01353h
39 https://doi.org/10.1109/jphotov.2018.2838444
40 https://doi.org/10.1126/science.1191462
41 https://doi.org/10.1515/nanoph-2016-0017
42 schema:datePublished 2019-01
43 schema:datePublishedReg 2019-01-01
44 schema:description CuS nanocrystalline particles are deposited into the acid-treated multi-wall carbon nanotubes (MWCNTs) film on the fluorine-doped tin oxide glass substrate through the successive ionic layer adsorption and reaction combined with spin-coating technology to form MWCNTs/CuS composite counter electrode (CE). The CuS adding amount is changed in different cycles to discuss its effect mechanism on the photoelectric properties of MWCNTs/CuS composite CE based quantum dot sensitized solar cells (QDSCs). The TiO2 photoanodes are prepared by the electrospinning technique with CdS and ZnS as co-sensitizer. QDSCs are assembled with photoanodes, the polysulfide electrolyte and abovementioned CEs. The CEs are characterized by X-ray diffraction, transmission electron microscope and energy dispersed X-ray detector, which verifies CuS nanocrystalline particles are attached to MWCNTs successfully. The photoelectric properties are analyzed by Nyquist, Tafel and J–V curves. The results show that the introduction of CuS nanocrystalline particles can promote reduction rate of polysulfide species and the short circuit current density (Jsc) to improve catalytic activity, leading to a higher power conversion efficiency (PCE). The MWCNTs based CE with deposition CuS in eight cycles exhibits the best photoelectric performance within all CE samples and the electrical conductivity of MWCNTs/8CuS CE is superior to that of Pt CE according to Nyquist and Tafel curve analysis. PCE of QDSCs with MWCNTs/8CuS CE is up to 5.186%, which is a little lower than that of Pt CE (5.250%), but it possesses a higher Jsc value (18.028 mA cm−2) than that of Pt CE (16.057 mA cm−2). The low-cost MWCNTs/CuS composite CE with simple preparation is more suitable than Pt CE for commercial application of QDSCs.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N6c4502371e6d4dd29e7c361c0cd5dd27
49 N91f553d6c9da42e787b6757079a02bcd
50 sg:journal.1136825
51 schema:name Effect of CuS nanocrystalline particles on counter electrodes of multi-wall carbon nanotubes for QDSCs
52 schema:pagination 1706-1713
53 schema:productId N0de75245cbd74536a97739bc8422881f
54 N821d589938904caea32f887cd5ef9eff
55 Ne3a2162c174e40388fe638c1cd98acb2
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110226761
57 https://doi.org/10.1007/s10854-018-0443-9
58 schema:sdDatePublished 2019-04-11T11:14
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N5575605561f04e419f094840bf5801e1
61 schema:url https://link.springer.com/10.1007%2Fs10854-018-0443-9
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0de75245cbd74536a97739bc8422881f schema:name readcube_id
66 schema:value 65c4c35a20c2249789e3ec686576912a3fdb76f9642df9576c46608a2f057bfb
67 rdf:type schema:PropertyValue
68 N1a11245d9a4246cf964bcaeaf7f7e611 rdf:first sg:person.016562725576.44
69 rdf:rest rdf:nil
70 N21aa75bdda504824afcf1dca84f37284 rdf:first sg:person.015167764576.52
71 rdf:rest Ne570d219ef1c4a86812f23bd2ad03bb4
72 N5575605561f04e419f094840bf5801e1 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N6c4502371e6d4dd29e7c361c0cd5dd27 schema:issueNumber 2
75 rdf:type schema:PublicationIssue
76 N71d807c54f5e4e1ea0a589d11b07b404 rdf:first sg:person.012205176046.55
77 rdf:rest N1a11245d9a4246cf964bcaeaf7f7e611
78 N821d589938904caea32f887cd5ef9eff schema:name doi
79 schema:value 10.1007/s10854-018-0443-9
80 rdf:type schema:PropertyValue
81 N91f553d6c9da42e787b6757079a02bcd schema:volumeNumber 30
82 rdf:type schema:PublicationVolume
83 Ne3a2162c174e40388fe638c1cd98acb2 schema:name dimensions_id
84 schema:value pub.1110226761
85 rdf:type schema:PropertyValue
86 Ne570d219ef1c4a86812f23bd2ad03bb4 rdf:first sg:person.013002556446.50
87 rdf:rest N71d807c54f5e4e1ea0a589d11b07b404
88 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
89 schema:name Chemical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Chemistry (incl. Structural)
93 rdf:type schema:DefinedTerm
94 sg:journal.1136825 schema:issn 0957-4522
95 1573-482X
96 schema:name Journal of Materials Science: Materials in Electronics
97 rdf:type schema:Periodical
98 sg:person.012205176046.55 schema:affiliation https://www.grid.ac/institutes/grid.411994.0
99 schema:familyName Wang
100 schema:givenName Di
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205176046.55
102 rdf:type schema:Person
103 sg:person.013002556446.50 schema:affiliation https://www.grid.ac/institutes/grid.411994.0
104 schema:familyName Wang
105 schema:givenName Qiming
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002556446.50
107 rdf:type schema:Person
108 sg:person.015167764576.52 schema:affiliation https://www.grid.ac/institutes/grid.411994.0
109 schema:familyName Zhang
110 schema:givenName Yinan
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167764576.52
112 rdf:type schema:Person
113 sg:person.016562725576.44 schema:affiliation https://www.grid.ac/institutes/grid.418084.1
114 schema:familyName Zheng
115 schema:givenName Wei
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016562725576.44
117 rdf:type schema:Person
118 sg:pub.10.1007/s10008-011-1541-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049070366
119 https://doi.org/10.1007/s10008-011-1541-2
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10854-016-5099-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045038880
122 https://doi.org/10.1007/s10854-016-5099-8
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10854-018-9616-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105341843
125 https://doi.org/10.1007/s10854-018-9616-9
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s40820-015-0043-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042549921
128 https://doi.org/10.1007/s40820-015-0043-7
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/asia.201600034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034148901
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/pip.360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040621159
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.apsusc.2017.04.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085201390
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.carbon.2012.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035735777
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ccr.2004.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024311133
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ccr.2016.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030264208
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.electacta.2013.10.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035502950
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.electacta.2013.12.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049698304
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.electacta.2015.05.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028776304
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.electacta.2018.04.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103507956
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jallcom.2017.03.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084084562
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jelechem.2016.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024835176
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jpowsour.2011.11.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039811659
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jpowsour.2012.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026161197
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jpowsour.2013.01.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001802004
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.nantod.2016.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022417601
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.rser.2017.01.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083762992
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.solener.2014.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025249880
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.solmat.2017.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100198338
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.talanta.2017.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085202494
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0927-0248(00)00033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004756362
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/am200838q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055141828
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/jp052768h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056061508
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/jp806791s schema:sameAs https://app.dimensions.ai/details/publication/pub.1017089021
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/la1019873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056152636
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1039/c2jm34425d schema:sameAs https://app.dimensions.ai/details/publication/pub.1045936799
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1039/c2jm35447k schema:sameAs https://app.dimensions.ai/details/publication/pub.1037402621
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1039/c3nr01564e schema:sameAs https://app.dimensions.ai/details/publication/pub.1045690193
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1039/c5nr03291a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038434346
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1039/c6nr09916e schema:sameAs https://app.dimensions.ai/details/publication/pub.1083419660
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1039/c6ta01353h schema:sameAs https://app.dimensions.ai/details/publication/pub.1039580583
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/jphotov.2018.2838444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104999292
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1191462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462514
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1515/nanoph-2016-0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014180693
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.411994.0 schema:alternateName Harbin University of Science and Technology
199 schema:name School of Material Science and Engineering, Harbin University of Science and Technology, 150040, Harbin, China
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.418084.1 schema:alternateName Institut National de la Recherche Scientifique
202 schema:name Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, J3X1S2, Quebec City, QC, Canada
203 School of Material Science and Engineering, Harbin University of Science and Technology, 150040, Harbin, China
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...