Thermal cycling aging effects on the tensile property and constitute behavior of Sn–3.0Ag–0.5Cu solder alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-12

AUTHORS

Yao Yao, Xuemei Yu

ABSTRACT

Thermal cycling aging effects on the tensile property of Sn–3.0Ag–0.5Cu solder alloy are investigated experimentally and theoretically. Solder specimens were tested at temperature ranges from 77 to 293 K and 77–398 K with different cyclic numbers. Thermal cycling optimizes the microstructure of solder and causes dislocation, which can enhance both tensile strength and plasticity of solder material. It is observed experimentally that the plasticity of Sn–3.0Ag–0.5Cu solder alloy is strongly time dependent, higher cycle number leads to an increase of plastic strain. A unified creep plasticity constitutive model is developed by modifying the drag strength and taking the effects of temperature and cycling number into account. A new material damage parameter is proposed to consider the temperature effect during the treatment, which is incorporated into the developed model to describe the mechanical behavior of Sn–3.0Ag–0.5Cu solder under thermal cycling. The numerical predictions agree well with the experimental results of Sn–3.0Ag–0.5Cu solder alloys, it shows the developed constitutive model can describe the mechanical properties of Sn–3.0Ag–0.5Cu solder under thermal cycling with reasonable accuracy. More... »

PAGES

867-875

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-018-0358-5

DOI

http://dx.doi.org/10.1007/s10854-018-0358-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109824447


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, 40237, Dusseldorf, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, Shaanxi Province, China", 
            "Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, 40237, Dusseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Yao", 
        "id": "sg:person.011313423711.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313423711.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, Shaanxi Province, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, Shaanxi Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Xuemei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10853-010-5231-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021238173", 
          "https://doi.org/10.1007/s10853-010-5231-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-016-5511-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025762276", 
          "https://doi.org/10.1007/s10854-016-5511-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-008-9757-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028711098", 
          "https://doi.org/10.1007/s10854-008-9757-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-011-1534-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052368455", 
          "https://doi.org/10.1007/s11664-011-1534-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-12", 
    "datePublishedReg": "2018-11-12", 
    "description": "Thermal cycling aging effects on the tensile property of Sn\u20133.0Ag\u20130.5Cu solder alloy are investigated experimentally and theoretically. Solder specimens were tested at temperature ranges from 77 to 293\u00a0K and 77\u2013398\u00a0K with different cyclic numbers. Thermal cycling optimizes the microstructure of solder and causes dislocation, which can enhance both tensile strength and plasticity of solder material. It is observed experimentally that the plasticity of Sn\u20133.0Ag\u20130.5Cu solder alloy is strongly time dependent, higher cycle number leads to an increase of plastic strain. A unified creep plasticity constitutive model is developed by modifying the drag strength and taking the effects of temperature and cycling number into account. A new material damage parameter is proposed to consider the temperature effect during the treatment, which is incorporated into the developed model to describe the mechanical behavior of Sn\u20133.0Ag\u20130.5Cu solder under thermal cycling. The numerical predictions agree well with the experimental results of Sn\u20133.0Ag\u20130.5Cu solder alloys, it shows the developed constitutive model can describe the mechanical properties of Sn\u20133.0Ag\u20130.5Cu solder under thermal cycling with reasonable accuracy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10854-018-0358-5", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8132855", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8124494", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "solder alloy", 
      "thermal cycling", 
      "constitutive model", 
      "tensile properties", 
      "creep-plasticity constitutive models", 
      "material damage parameters", 
      "microstructure of solder", 
      "plasticity constitutive model", 
      "solder specimens", 
      "solder materials", 
      "plastic strain", 
      "mechanical behavior", 
      "mechanical properties", 
      "constitute behavior", 
      "numerical predictions", 
      "tensile strength", 
      "cyclic number", 
      "damage parameters", 
      "higher cycle numbers", 
      "alloy", 
      "solder", 
      "drag strength", 
      "cycling number", 
      "cycle number", 
      "effect of temperature", 
      "experimental results", 
      "reasonable accuracy", 
      "temperature effects", 
      "temperature", 
      "strength", 
      "properties", 
      "microstructure", 
      "cycling", 
      "behavior", 
      "materials", 
      "model", 
      "dislocations", 
      "parameters", 
      "effect", 
      "accuracy", 
      "specimens", 
      "prediction", 
      "plasticity", 
      "account", 
      "results", 
      "number", 
      "strains", 
      "increase", 
      "time", 
      "treatment"
    ], 
    "name": "Thermal cycling aging effects on the tensile property and constitute behavior of Sn\u20133.0Ag\u20130.5Cu solder alloy", 
    "pagination": "867-875", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109824447"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-018-0358-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-018-0358-5", 
      "https://app.dimensions.ai/details/publication/pub.1109824447"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_766.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10854-018-0358-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0358-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0358-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0358-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0358-5'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      78 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-018-0358-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N563acb22e8814d59bbf35ed7484207e3
4 schema:citation sg:pub.10.1007/s10853-010-5231-8
5 sg:pub.10.1007/s10854-008-9757-3
6 sg:pub.10.1007/s10854-016-5511-4
7 sg:pub.10.1007/s11664-011-1534-z
8 schema:datePublished 2018-11-12
9 schema:datePublishedReg 2018-11-12
10 schema:description Thermal cycling aging effects on the tensile property of Sn–3.0Ag–0.5Cu solder alloy are investigated experimentally and theoretically. Solder specimens were tested at temperature ranges from 77 to 293 K and 77–398 K with different cyclic numbers. Thermal cycling optimizes the microstructure of solder and causes dislocation, which can enhance both tensile strength and plasticity of solder material. It is observed experimentally that the plasticity of Sn–3.0Ag–0.5Cu solder alloy is strongly time dependent, higher cycle number leads to an increase of plastic strain. A unified creep plasticity constitutive model is developed by modifying the drag strength and taking the effects of temperature and cycling number into account. A new material damage parameter is proposed to consider the temperature effect during the treatment, which is incorporated into the developed model to describe the mechanical behavior of Sn–3.0Ag–0.5Cu solder under thermal cycling. The numerical predictions agree well with the experimental results of Sn–3.0Ag–0.5Cu solder alloys, it shows the developed constitutive model can describe the mechanical properties of Sn–3.0Ag–0.5Cu solder under thermal cycling with reasonable accuracy.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N002843c3fde541bfba43dd1445b9ece5
14 N8aa2a6661bef4eab9a35a3248b43c85e
15 sg:journal.1136825
16 schema:keywords account
17 accuracy
18 alloy
19 behavior
20 constitute behavior
21 constitutive model
22 creep-plasticity constitutive models
23 cycle number
24 cyclic number
25 cycling
26 cycling number
27 damage parameters
28 dislocations
29 drag strength
30 effect
31 effect of temperature
32 experimental results
33 higher cycle numbers
34 increase
35 material damage parameters
36 materials
37 mechanical behavior
38 mechanical properties
39 microstructure
40 microstructure of solder
41 model
42 number
43 numerical predictions
44 parameters
45 plastic strain
46 plasticity
47 plasticity constitutive model
48 prediction
49 properties
50 reasonable accuracy
51 results
52 solder
53 solder alloy
54 solder materials
55 solder specimens
56 specimens
57 strains
58 strength
59 temperature
60 temperature effects
61 tensile properties
62 tensile strength
63 thermal cycling
64 time
65 treatment
66 schema:name Thermal cycling aging effects on the tensile property and constitute behavior of Sn–3.0Ag–0.5Cu solder alloy
67 schema:pagination 867-875
68 schema:productId N07136c7bf2724f4fa76e291acebca81e
69 N8d615a2bf8184675aaf4029fb858635b
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109824447
71 https://doi.org/10.1007/s10854-018-0358-5
72 schema:sdDatePublished 2022-12-01T06:37
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nb76665c27c4e4717b5a1870152dd842f
75 schema:url https://doi.org/10.1007/s10854-018-0358-5
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N002843c3fde541bfba43dd1445b9ece5 schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 N07136c7bf2724f4fa76e291acebca81e schema:name dimensions_id
82 schema:value pub.1109824447
83 rdf:type schema:PropertyValue
84 N563acb22e8814d59bbf35ed7484207e3 rdf:first sg:person.011313423711.63
85 rdf:rest Nf0604cbfea9943b0b7151b810d7a8d96
86 N6b0c2592b460427ab27d57fda08e5b29 schema:affiliation grid-institutes:grid.440588.5
87 schema:familyName Yu
88 schema:givenName Xuemei
89 rdf:type schema:Person
90 N8aa2a6661bef4eab9a35a3248b43c85e schema:volumeNumber 30
91 rdf:type schema:PublicationVolume
92 N8d615a2bf8184675aaf4029fb858635b schema:name doi
93 schema:value 10.1007/s10854-018-0358-5
94 rdf:type schema:PropertyValue
95 Nb76665c27c4e4717b5a1870152dd842f schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nf0604cbfea9943b0b7151b810d7a8d96 rdf:first N6b0c2592b460427ab27d57fda08e5b29
98 rdf:rest rdf:nil
99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
100 schema:name Engineering
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
103 schema:name Materials Engineering
104 rdf:type schema:DefinedTerm
105 sg:grant.8124494 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-018-0358-5
106 rdf:type schema:MonetaryGrant
107 sg:grant.8132855 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-018-0358-5
108 rdf:type schema:MonetaryGrant
109 sg:journal.1136825 schema:issn 0957-4522
110 1573-482X
111 schema:name Journal of Materials Science: Materials in Electronics
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.011313423711.63 schema:affiliation grid-institutes:None
115 schema:familyName Yao
116 schema:givenName Yao
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313423711.63
118 rdf:type schema:Person
119 sg:pub.10.1007/s10853-010-5231-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021238173
120 https://doi.org/10.1007/s10853-010-5231-8
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10854-008-9757-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028711098
123 https://doi.org/10.1007/s10854-008-9757-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10854-016-5511-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025762276
126 https://doi.org/10.1007/s10854-016-5511-4
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11664-011-1534-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052368455
129 https://doi.org/10.1007/s11664-011-1534-z
130 rdf:type schema:CreativeWork
131 grid-institutes:None schema:alternateName Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, 40237, Dusseldorf, Germany
132 schema:name Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, 40237, Dusseldorf, Germany
133 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi’an, Shaanxi Province, China
134 rdf:type schema:Organization
135 grid-institutes:grid.440588.5 schema:alternateName School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi’an, Shaanxi Province, China
136 schema:name School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi’an, Shaanxi Province, China
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...