Synthesis of vanadium-pentoxide-supported graphitic carbon nitride heterostructure and studied their hydrogen evolution activity under solar light View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

S. V. Prabhakar Vattikuti, Police Anil Kumar Reddy, Jaesool Shim, Chan Byon

ABSTRACT

Noble-metal-free co-catalyst supported with a highly active and stable photocatalyst is of considerable importance to realize low cost and scaled up photocatalytic hydrogen evolution. An inorganic–organic two-dimensional (2D)/one-dimensional (1D) graphitic carbon nitride (g-C3N4) nanosheet anchored with a vanadium pentoxide (V2O5) nanoparticle heterojunction photocatalyst (GCN/V2O5-3) with excellent solar-light-driven photocatalytic performance was prepared using a facile thermal decomposition method and used for photocatalytic hydrogen (H2) evolution from concentrated lactic acid aqueous solution. The optimized GCN/V2O5-3 catalyst attained a high initial H2 evolution rate of 2891.53 µmol g−1, which is 2.44 times greater than that of pristine g-C3N4 under simulated solar light irradiation. In addition, the GCN/V2O5-3 catalyst is relatively stable for 5 h H2 evolution reactions, indicating the robustness of the V2O5 co-catalyst. The improved photocatalytic activity of the g-C3N4/V2O5 composites can be ascribed to their large specific surface area. Photoelectrochemical analysis results clearly show that V2O5 co-catalyst captures photoinduced holes from the valance band of the excited g-C3N4 by a Z-scheme mechanism and thus improving the charge separation performance and endorse the H+ reduction to H2. Lastly, the mechanism of photocatalytic H2 evolution of the g-C3N4/V2O5 composite is discussed. Importantly, because of its high stability, easy processing, and low cost, the V2O5 co-catalyst has abundant potential in designing high-performance-semiconductor/organic photocatalysts for large-scale H2 production utilizing renewable energy sources. More... »

PAGES

18760-18770

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-018-0001-5

DOI

http://dx.doi.org/10.1007/s10854-018-0001-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106930087


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "School of Mechanical Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Gyeongsan, Gyeongsangbuk-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vattikuti", 
        "givenName": "S. V. Prabhakar", 
        "id": "sg:person.011435043237.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435043237.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ulsan National Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.42687.3f", 
          "name": [
            "School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reddy", 
        "givenName": "Police Anil Kumar", 
        "id": "sg:person.014013564522.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014013564522.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "School of Mechanical Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Gyeongsan, Gyeongsangbuk-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shim", 
        "givenName": "Jaesool", 
        "id": "sg:person.0634501146.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634501146.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ulsan National Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.42687.3f", 
          "name": [
            "School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Byon", 
        "givenName": "Chan", 
        "id": "sg:person.013030004237.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030004237.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.powtec.2010.11.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001484190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5nj01582k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004416138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0jm01306d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008736240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0jm01306d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008736240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2015.06.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010141355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2012.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011739904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr03008g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014390476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2015.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020397229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm30462g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021037948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2014.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037124022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042034886", 
          "https://doi.org/10.1038/ncomms9647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am403653a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044473955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2012.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047402293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra12172d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048082935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nj01807a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050594588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3199(96)00075-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051957832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemrev.6b00075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055085267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsenergylett.6b00574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055135743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp512169w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056104611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9826165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056128236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9826165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056128236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz500546b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056135614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ee03768b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083693605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ta10497e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083696732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotochem.2017.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084091740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7sc01747b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085880905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2017.07.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090881340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.07.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091407682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201703168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091413400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.7b08548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091787757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ta07705j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092446673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acscatal.7b03266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092522782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2017.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099642568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2018.01.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101268134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-648x/aab511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101411509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1872-2067(17)62968-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101554964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1872-2067(17)62968-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101554964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1872-2067(18)63044-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101555586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1872-2067(18)63044-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101555586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2018.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101671622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsos.171419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101817732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2018.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103176077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2018.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103177361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2018.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103963204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c8ta02061b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104163222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2018.06.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104556966"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Noble-metal-free co-catalyst supported with a highly active and stable photocatalyst is of considerable importance to realize low cost and scaled up photocatalytic hydrogen evolution. An inorganic\u2013organic two-dimensional (2D)/one-dimensional (1D) graphitic carbon nitride (g-C3N4) nanosheet anchored with a vanadium pentoxide (V2O5) nanoparticle heterojunction photocatalyst (GCN/V2O5-3) with excellent solar-light-driven photocatalytic performance was prepared using a facile thermal decomposition method and used for photocatalytic hydrogen (H2) evolution from concentrated lactic acid aqueous solution. The optimized GCN/V2O5-3 catalyst attained a high initial H2 evolution rate of 2891.53 \u00b5mol g\u22121, which is 2.44 times greater than that of pristine g-C3N4 under simulated solar light irradiation. In addition, the GCN/V2O5-3 catalyst is relatively stable for 5 h H2 evolution reactions, indicating the robustness of the V2O5 co-catalyst. The improved photocatalytic activity of the g-C3N4/V2O5 composites can be ascribed to their large specific surface area. Photoelectrochemical analysis results clearly show that V2O5 co-catalyst captures photoinduced holes from the valance band of the excited g-C3N4 by a Z-scheme mechanism and thus improving the charge separation performance and endorse the H+ reduction to H2. Lastly, the mechanism of photocatalytic H2 evolution of the g-C3N4/V2O5 composite is discussed. Importantly, because of its high stability, easy processing, and low cost, the V2O5 co-catalyst has abundant potential in designing high-performance-semiconductor/organic photocatalysts for large-scale H2 production utilizing renewable energy sources.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10854-018-0001-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "21", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Synthesis of vanadium-pentoxide-supported graphitic carbon nitride heterostructure and studied their hydrogen evolution activity under solar light", 
    "pagination": "18760-18770", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a485a50791cc195c68164943e03c3b37346063502a462246ce646c87147d9f9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-018-0001-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106930087"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-018-0001-5", 
      "https://app.dimensions.ai/details/publication/pub.1106930087"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10854-018-0001-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0001-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0001-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0001-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-018-0001-5'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-018-0001-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N66553cd6b6374adcadb66a766a8947f5
4 schema:citation sg:pub.10.1038/ncomms9647
5 https://doi.org/10.1002/chem.201703168
6 https://doi.org/10.1016/j.apcatb.2012.08.015
7 https://doi.org/10.1016/j.apcatb.2015.06.057
8 https://doi.org/10.1016/j.apcatb.2017.07.061
9 https://doi.org/10.1016/j.apcatb.2017.12.026
10 https://doi.org/10.1016/j.apsusc.2015.09.010
11 https://doi.org/10.1016/j.apsusc.2018.01.133
12 https://doi.org/10.1016/j.apsusc.2018.04.040
13 https://doi.org/10.1016/j.carbon.2018.05.019
14 https://doi.org/10.1016/j.cattod.2018.04.007
15 https://doi.org/10.1016/j.diamond.2018.03.019
16 https://doi.org/10.1016/j.electacta.2018.06.090
17 https://doi.org/10.1016/j.jphotochem.2017.03.027
18 https://doi.org/10.1016/j.molliq.2014.07.030
19 https://doi.org/10.1016/j.powtec.2010.11.039
20 https://doi.org/10.1016/j.rser.2012.03.036
21 https://doi.org/10.1016/j.rser.2017.07.062
22 https://doi.org/10.1016/s0360-3199(96)00075-4
23 https://doi.org/10.1016/s1872-2067(17)62968-1
24 https://doi.org/10.1016/s1872-2067(18)63044-x
25 https://doi.org/10.1021/acs.chemrev.6b00075
26 https://doi.org/10.1021/acsami.7b08548
27 https://doi.org/10.1021/acscatal.7b03266
28 https://doi.org/10.1021/acsenergylett.6b00574
29 https://doi.org/10.1021/am403653a
30 https://doi.org/10.1021/jp512169w
31 https://doi.org/10.1021/jp9826165
32 https://doi.org/10.1021/jz500546b
33 https://doi.org/10.1039/c0jm01306d
34 https://doi.org/10.1039/c2jm30462g
35 https://doi.org/10.1039/c4nj01807a
36 https://doi.org/10.1039/c4nr03008g
37 https://doi.org/10.1039/c4ra12172d
38 https://doi.org/10.1039/c5nj01582k
39 https://doi.org/10.1039/c6ee03768b
40 https://doi.org/10.1039/c6ta10497e
41 https://doi.org/10.1039/c7sc01747b
42 https://doi.org/10.1039/c7ta07705j
43 https://doi.org/10.1039/c8ta02061b
44 https://doi.org/10.1088/1361-648x/aab511
45 https://doi.org/10.1098/rsos.171419
46 schema:datePublished 2018-11
47 schema:datePublishedReg 2018-11-01
48 schema:description Noble-metal-free co-catalyst supported with a highly active and stable photocatalyst is of considerable importance to realize low cost and scaled up photocatalytic hydrogen evolution. An inorganic–organic two-dimensional (2D)/one-dimensional (1D) graphitic carbon nitride (g-C3N4) nanosheet anchored with a vanadium pentoxide (V2O5) nanoparticle heterojunction photocatalyst (GCN/V2O5-3) with excellent solar-light-driven photocatalytic performance was prepared using a facile thermal decomposition method and used for photocatalytic hydrogen (H2) evolution from concentrated lactic acid aqueous solution. The optimized GCN/V2O5-3 catalyst attained a high initial H2 evolution rate of 2891.53 µmol g−1, which is 2.44 times greater than that of pristine g-C3N4 under simulated solar light irradiation. In addition, the GCN/V2O5-3 catalyst is relatively stable for 5 h H2 evolution reactions, indicating the robustness of the V2O5 co-catalyst. The improved photocatalytic activity of the g-C3N4/V2O5 composites can be ascribed to their large specific surface area. Photoelectrochemical analysis results clearly show that V2O5 co-catalyst captures photoinduced holes from the valance band of the excited g-C3N4 by a Z-scheme mechanism and thus improving the charge separation performance and endorse the H+ reduction to H2. Lastly, the mechanism of photocatalytic H2 evolution of the g-C3N4/V2O5 composite is discussed. Importantly, because of its high stability, easy processing, and low cost, the V2O5 co-catalyst has abundant potential in designing high-performance-semiconductor/organic photocatalysts for large-scale H2 production utilizing renewable energy sources.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf Nb3e820716518453a9344e07e8f3f50d7
53 Nccb32fda0983499bb17742d7a8816db7
54 sg:journal.1136825
55 schema:name Synthesis of vanadium-pentoxide-supported graphitic carbon nitride heterostructure and studied their hydrogen evolution activity under solar light
56 schema:pagination 18760-18770
57 schema:productId Nac39ca3156224bd8aa11b707c34d8037
58 Nbfab0e8cd5464d3eb1e3bc03774d05ff
59 Nd4931b84bd6844768fd5442b14630d55
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106930087
61 https://doi.org/10.1007/s10854-018-0001-5
62 schema:sdDatePublished 2019-04-10T15:57
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N9c7adf2dcec544a1ba2d42c906b660dc
65 schema:url https://link.springer.com/10.1007%2Fs10854-018-0001-5
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N3706cc37b20b486e9fee22e3882e1749 rdf:first sg:person.014013564522.09
70 rdf:rest Nf64b41939299449390347f8bc69ce709
71 N66553cd6b6374adcadb66a766a8947f5 rdf:first sg:person.011435043237.91
72 rdf:rest N3706cc37b20b486e9fee22e3882e1749
73 N9c7adf2dcec544a1ba2d42c906b660dc schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nac39ca3156224bd8aa11b707c34d8037 schema:name readcube_id
76 schema:value 0a485a50791cc195c68164943e03c3b37346063502a462246ce646c87147d9f9
77 rdf:type schema:PropertyValue
78 Nb3e820716518453a9344e07e8f3f50d7 schema:volumeNumber 29
79 rdf:type schema:PublicationVolume
80 Nbfab0e8cd5464d3eb1e3bc03774d05ff schema:name dimensions_id
81 schema:value pub.1106930087
82 rdf:type schema:PropertyValue
83 Nccb32fda0983499bb17742d7a8816db7 schema:issueNumber 21
84 rdf:type schema:PublicationIssue
85 Nd4931b84bd6844768fd5442b14630d55 schema:name doi
86 schema:value 10.1007/s10854-018-0001-5
87 rdf:type schema:PropertyValue
88 Nf1536990e44b452d8648756b49de30fa rdf:first sg:person.013030004237.64
89 rdf:rest rdf:nil
90 Nf64b41939299449390347f8bc69ce709 rdf:first sg:person.0634501146.15
91 rdf:rest Nf1536990e44b452d8648756b49de30fa
92 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
93 schema:name Chemical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Chemistry (incl. Structural)
97 rdf:type schema:DefinedTerm
98 sg:journal.1136825 schema:issn 0957-4522
99 1573-482X
100 schema:name Journal of Materials Science: Materials in Electronics
101 rdf:type schema:Periodical
102 sg:person.011435043237.91 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
103 schema:familyName Vattikuti
104 schema:givenName S. V. Prabhakar
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435043237.91
106 rdf:type schema:Person
107 sg:person.013030004237.64 schema:affiliation https://www.grid.ac/institutes/grid.42687.3f
108 schema:familyName Byon
109 schema:givenName Chan
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030004237.64
111 rdf:type schema:Person
112 sg:person.014013564522.09 schema:affiliation https://www.grid.ac/institutes/grid.42687.3f
113 schema:familyName Reddy
114 schema:givenName Police Anil Kumar
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014013564522.09
116 rdf:type schema:Person
117 sg:person.0634501146.15 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
118 schema:familyName Shim
119 schema:givenName Jaesool
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634501146.15
121 rdf:type schema:Person
122 sg:pub.10.1038/ncomms9647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042034886
123 https://doi.org/10.1038/ncomms9647
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/chem.201703168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091413400
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.apcatb.2012.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011739904
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.apcatb.2015.06.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010141355
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.apcatb.2017.07.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090881340
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.apcatb.2017.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099642568
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.apsusc.2015.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020397229
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.apsusc.2018.01.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101268134
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.apsusc.2018.04.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103176077
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.carbon.2018.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103963204
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.cattod.2018.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103177361
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.diamond.2018.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101671622
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.electacta.2018.06.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104556966
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jphotochem.2017.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084091740
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.molliq.2014.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037124022
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.powtec.2010.11.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484190
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.rser.2012.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047402293
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.rser.2017.07.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091407682
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0360-3199(96)00075-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051957832
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s1872-2067(17)62968-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101554964
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s1872-2067(18)63044-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101555586
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/acs.chemrev.6b00075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055085267
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/acsami.7b08548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091787757
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/acscatal.7b03266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092522782
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/acsenergylett.6b00574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055135743
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/am403653a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044473955
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/jp512169w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056104611
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/jp9826165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056128236
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/jz500546b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056135614
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1039/c0jm01306d schema:sameAs https://app.dimensions.ai/details/publication/pub.1008736240
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1039/c2jm30462g schema:sameAs https://app.dimensions.ai/details/publication/pub.1021037948
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1039/c4nj01807a schema:sameAs https://app.dimensions.ai/details/publication/pub.1050594588
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1039/c4nr03008g schema:sameAs https://app.dimensions.ai/details/publication/pub.1014390476
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1039/c4ra12172d schema:sameAs https://app.dimensions.ai/details/publication/pub.1048082935
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1039/c5nj01582k schema:sameAs https://app.dimensions.ai/details/publication/pub.1004416138
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1039/c6ee03768b schema:sameAs https://app.dimensions.ai/details/publication/pub.1083693605
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1039/c6ta10497e schema:sameAs https://app.dimensions.ai/details/publication/pub.1083696732
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1039/c7sc01747b schema:sameAs https://app.dimensions.ai/details/publication/pub.1085880905
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1039/c7ta07705j schema:sameAs https://app.dimensions.ai/details/publication/pub.1092446673
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1039/c8ta02061b schema:sameAs https://app.dimensions.ai/details/publication/pub.1104163222
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1088/1361-648x/aab511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101411509
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1098/rsos.171419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101817732
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
208 schema:name School of Mechanical Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.42687.3f schema:alternateName Ulsan National Institute of Science and Technology
211 schema:name School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...