Enabling magnetoelastic coupling in Ni/VO2 heterostructure by structural phase transition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11-02

AUTHORS

Yuanjun Yang, Bin Hong, Haoliang Huang, Zhenlin Luo, Chen Gao, Chaoyang Kang, Xiaoguang Li

ABSTRACT

Strain engineering is a popular approach for manipulating material properties through modifying crystal structures and/or electron-lattice interactions. In this work, we used a phase transition material, vanadium dioxide (VO2) as an active and reconfigurable substrate to generate a controllable strain. Amorphous ferromagnetic Ni thin films were deposited on the (010)-VO2/(0001)-Al2O3 substrates. It is observed that the magnetic moments of the Ni thin film were modulated by interfacing it with the VO2 thin film. We observed a hysteresis in the magnetic moment-temperature curves in the vicinity of the metal–insulator transition of the VO2 thin films at a low magnetic field bias (< 30 Oe). This result can be attributed to magnetoelastic coupling between the Ni and VO2 thin films through a reversible structural phase transition. As the bias field was increased, the hysteresis was suppressed and eventually disappeared. The competition between the magnetoelastic energy and external Zeeman energy can explain these behaviors. Our observations suggest a promising approach to dynamically controlling the properties of functional thin films by strain engineering. More... »

PAGES

2561-2567

References to SciGraph publications

  • 2017-02-22. Electrical and dielectric properties of polymer composite based on vanadium dioxide in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2015-08-31. Direct mapping of Li-enabled octahedral tilt ordering and associated strain in nanostructured perovskites in NATURE MATERIALS
  • 2016-03-07. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling in NATURE MATERIALS
  • 2016-03-31. Dynamic in situ observation of voltage-driven repeatable magnetization reversal at room temperature in SCIENTIFIC REPORTS
  • 2015-06-06. Effect of O2 flow rate in the annealing process on metal–insulator transition of vanadium oxide thin films in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2016-01-28. The effects of niobium on the structure and properties of VO2 films in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2015-04-01. Synthesis and characterization of VO2(B)/graphene nanocomposite for supercapacitors in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2017-07-27. Stability and heating rate dependent metal–insulator transition properties of VO2 film grown by MBE in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2012-02-12. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors in NATURE MATERIALS
  • 2017-04-03. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure in NATURE MATERIALS
  • 2017-04-03. Surface-dominated conduction up to 240 K in the Kondo insulator SmB6 under strain in NATURE MATERIALS
  • 2016-09-30. Electrically controlled non-volatile switching of magnetism in multiferroic heterostructures via engineered ferroelastic domain states in NPG ASIA MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10854-017-8178-6

    DOI

    http://dx.doi.org/10.1007/s10854-017-8178-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092500853


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Electronic Science and Applied Physics, and Lab of Quantum Materials and Interfaces, Hefei University of Technology, 230009, Hefei, Anhui, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.256896.6", 
              "name": [
                "School of Electronic Science and Applied Physics, and Lab of Quantum Materials and Interfaces, Hefei University of Technology, 230009, Hefei, Anhui, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Yuanjun", 
            "id": "sg:person.0764727260.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764727260.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hong", 
            "givenName": "Bin", 
            "id": "sg:person.012063433777.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012063433777.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Haoliang", 
            "id": "sg:person.01033042460.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033042460.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luo", 
            "givenName": "Zhenlin", 
            "id": "sg:person.01013074610.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013074610.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Chen", 
            "id": "sg:person.010733427701.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010733427701.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Electronic Information Engineering, Henan Polytechnic University, 454000, Jiaozuo, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412097.9", 
              "name": [
                "School of Physics and Electronic Information Engineering, Henan Polytechnic University, 454000, Jiaozuo, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Chaoyang", 
            "id": "sg:person.014240420227.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014240420227.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Departments of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xiaoguang", 
            "id": "sg:person.015467665336.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015467665336.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat4579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038405724", 
              "https://doi.org/10.1038/nmat4579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-017-6547-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083882124", 
              "https://doi.org/10.1007/s10854-017-6547-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-016-4384-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037976559", 
              "https://doi.org/10.1007/s10854-016-4384-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-017-7603-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090905178", 
              "https://doi.org/10.1007/s10854-017-7603-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/am.2016.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012213593", 
              "https://doi.org/10.1038/am.2016.139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084509226", 
              "https://doi.org/10.1038/nmat4886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-015-2972-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012088964", 
              "https://doi.org/10.1007/s10854-015-2972-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037233822", 
              "https://doi.org/10.1038/nmat3247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084509224", 
              "https://doi.org/10.1038/nmat4888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022274390", 
              "https://doi.org/10.1038/nmat4390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep23696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011072052", 
              "https://doi.org/10.1038/srep23696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-015-3310-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022055105", 
              "https://doi.org/10.1007/s10854-015-3310-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-11-02", 
        "datePublishedReg": "2017-11-02", 
        "description": "Strain engineering is a popular approach for manipulating material properties through modifying crystal structures and/or electron-lattice interactions. In this work, we used a phase transition material, vanadium dioxide (VO2) as an active and reconfigurable substrate to generate a controllable strain. Amorphous ferromagnetic Ni thin films were deposited on the (010)-VO2/(0001)-Al2O3 substrates. It is observed that the magnetic moments of the Ni thin film were modulated by interfacing it with the VO2 thin film. We observed a hysteresis in the magnetic moment-temperature curves in the vicinity of the metal\u2013insulator transition of the VO2 thin films at a low magnetic field bias (<\u200930\u00a0Oe). This result can be attributed to magnetoelastic coupling between the Ni and VO2 thin films through a reversible structural phase transition. As the bias field was increased, the hysteresis was suppressed and eventually disappeared. The competition between the magnetoelastic energy and external Zeeman energy can explain these behaviors. Our observations suggest a promising approach to dynamically controlling the properties of functional thin films by strain engineering.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10854-017-8178-6", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8255677", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8119060", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8122757", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136825", 
            "issn": [
              "0957-4522", 
              "1573-482X"
            ], 
            "name": "Journal of Materials Science: Materials in Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "VO2 thin films", 
          "Ni thin films", 
          "thin films", 
          "functional thin films", 
          "magnetic field bias", 
          "phase transition materials", 
          "controllable strain", 
          "material properties", 
          "Al2O3 substrates", 
          "vanadium dioxide", 
          "structural phase transition", 
          "strain engineering", 
          "transition materials", 
          "magnetoelastic coupling", 
          "reconfigurable substrate", 
          "films", 
          "magnetoelastic energy", 
          "bias field", 
          "field bias", 
          "phase transition", 
          "hysteresis", 
          "metal-insulator transition", 
          "engineering", 
          "reversible structural phase transition", 
          "substrate", 
          "energy", 
          "properties", 
          "heterostructures", 
          "promising approach", 
          "materials", 
          "Ni", 
          "dioxide", 
          "coupling", 
          "transition", 
          "vicinity", 
          "magnetic moment", 
          "Zeeman energy", 
          "behavior", 
          "field", 
          "structure", 
          "approach", 
          "electron-lattice interaction", 
          "work", 
          "curves", 
          "popular approach", 
          "crystal structure", 
          "results", 
          "strains", 
          "moment", 
          "observations", 
          "interaction", 
          "bias", 
          "competition"
        ], 
        "name": "Enabling magnetoelastic coupling in Ni/VO2 heterostructure by structural phase transition", 
        "pagination": "2561-2567", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092500853"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10854-017-8178-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10854-017-8178-6", 
          "https://app.dimensions.ai/details/publication/pub.1092500853"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_741.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10854-017-8178-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-8178-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-8178-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-8178-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-8178-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    215 TRIPLES      21 PREDICATES      89 URIs      69 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10854-017-8178-6 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nfa94b4fa3fb842959623a3792e3b04b7
    4 schema:citation sg:pub.10.1007/s10854-015-2972-9
    5 sg:pub.10.1007/s10854-015-3310-y
    6 sg:pub.10.1007/s10854-016-4384-x
    7 sg:pub.10.1007/s10854-017-6547-9
    8 sg:pub.10.1007/s10854-017-7603-1
    9 sg:pub.10.1038/am.2016.139
    10 sg:pub.10.1038/nmat3247
    11 sg:pub.10.1038/nmat4390
    12 sg:pub.10.1038/nmat4579
    13 sg:pub.10.1038/nmat4886
    14 sg:pub.10.1038/nmat4888
    15 sg:pub.10.1038/srep23696
    16 schema:datePublished 2017-11-02
    17 schema:datePublishedReg 2017-11-02
    18 schema:description Strain engineering is a popular approach for manipulating material properties through modifying crystal structures and/or electron-lattice interactions. In this work, we used a phase transition material, vanadium dioxide (VO2) as an active and reconfigurable substrate to generate a controllable strain. Amorphous ferromagnetic Ni thin films were deposited on the (010)-VO2/(0001)-Al2O3 substrates. It is observed that the magnetic moments of the Ni thin film were modulated by interfacing it with the VO2 thin film. We observed a hysteresis in the magnetic moment-temperature curves in the vicinity of the metal–insulator transition of the VO2 thin films at a low magnetic field bias (< 30 Oe). This result can be attributed to magnetoelastic coupling between the Ni and VO2 thin films through a reversible structural phase transition. As the bias field was increased, the hysteresis was suppressed and eventually disappeared. The competition between the magnetoelastic energy and external Zeeman energy can explain these behaviors. Our observations suggest a promising approach to dynamically controlling the properties of functional thin films by strain engineering.
    19 schema:genre article
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N5f43ff31c815457b8e69d9e9c6c3afda
    22 N6c44118d66be40cfbae911c52c549aa1
    23 sg:journal.1136825
    24 schema:keywords Al2O3 substrates
    25 Ni
    26 Ni thin films
    27 VO2 thin films
    28 Zeeman energy
    29 approach
    30 behavior
    31 bias
    32 bias field
    33 competition
    34 controllable strain
    35 coupling
    36 crystal structure
    37 curves
    38 dioxide
    39 electron-lattice interaction
    40 energy
    41 engineering
    42 field
    43 field bias
    44 films
    45 functional thin films
    46 heterostructures
    47 hysteresis
    48 interaction
    49 magnetic field bias
    50 magnetic moment
    51 magnetoelastic coupling
    52 magnetoelastic energy
    53 material properties
    54 materials
    55 metal-insulator transition
    56 moment
    57 observations
    58 phase transition
    59 phase transition materials
    60 popular approach
    61 promising approach
    62 properties
    63 reconfigurable substrate
    64 results
    65 reversible structural phase transition
    66 strain engineering
    67 strains
    68 structural phase transition
    69 structure
    70 substrate
    71 thin films
    72 transition
    73 transition materials
    74 vanadium dioxide
    75 vicinity
    76 work
    77 schema:name Enabling magnetoelastic coupling in Ni/VO2 heterostructure by structural phase transition
    78 schema:pagination 2561-2567
    79 schema:productId N2ec459cc24b64d73a15194be1c659214
    80 Nb621290de84246a29beef4896fced383
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092500853
    82 https://doi.org/10.1007/s10854-017-8178-6
    83 schema:sdDatePublished 2022-10-01T06:43
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher N73060098d6cf43c6adb430d1eea215c1
    86 schema:url https://doi.org/10.1007/s10854-017-8178-6
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N1ec813b1e78f434c9da82d54e3b8316f rdf:first sg:person.015467665336.04
    91 rdf:rest rdf:nil
    92 N2ec459cc24b64d73a15194be1c659214 schema:name dimensions_id
    93 schema:value pub.1092500853
    94 rdf:type schema:PropertyValue
    95 N4dce48446e994983b0c71492fadcb05d rdf:first sg:person.01013074610.21
    96 rdf:rest Nadf14185707244e19746543a376ea890
    97 N58d5dc7860df420f86419fa9a3bba897 rdf:first sg:person.014240420227.53
    98 rdf:rest N1ec813b1e78f434c9da82d54e3b8316f
    99 N5f43ff31c815457b8e69d9e9c6c3afda schema:volumeNumber 29
    100 rdf:type schema:PublicationVolume
    101 N6c44118d66be40cfbae911c52c549aa1 schema:issueNumber 3
    102 rdf:type schema:PublicationIssue
    103 N73060098d6cf43c6adb430d1eea215c1 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Nadf14185707244e19746543a376ea890 rdf:first sg:person.010733427701.66
    106 rdf:rest N58d5dc7860df420f86419fa9a3bba897
    107 Nb621290de84246a29beef4896fced383 schema:name doi
    108 schema:value 10.1007/s10854-017-8178-6
    109 rdf:type schema:PropertyValue
    110 Ndd760d0cc9e1435aa4ac39be8d2227f4 rdf:first sg:person.012063433777.75
    111 rdf:rest Nf19398d9f5744804b6d182f6cd83695b
    112 Nf19398d9f5744804b6d182f6cd83695b rdf:first sg:person.01033042460.09
    113 rdf:rest N4dce48446e994983b0c71492fadcb05d
    114 Nfa94b4fa3fb842959623a3792e3b04b7 rdf:first sg:person.0764727260.84
    115 rdf:rest Ndd760d0cc9e1435aa4ac39be8d2227f4
    116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Engineering
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Materials Engineering
    121 rdf:type schema:DefinedTerm
    122 sg:grant.8119060 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-017-8178-6
    123 rdf:type schema:MonetaryGrant
    124 sg:grant.8122757 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-017-8178-6
    125 rdf:type schema:MonetaryGrant
    126 sg:grant.8255677 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-017-8178-6
    127 rdf:type schema:MonetaryGrant
    128 sg:journal.1136825 schema:issn 0957-4522
    129 1573-482X
    130 schema:name Journal of Materials Science: Materials in Electronics
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.01013074610.21 schema:affiliation grid-institutes:grid.511309.f
    134 schema:familyName Luo
    135 schema:givenName Zhenlin
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013074610.21
    137 rdf:type schema:Person
    138 sg:person.01033042460.09 schema:affiliation grid-institutes:grid.511309.f
    139 schema:familyName Huang
    140 schema:givenName Haoliang
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033042460.09
    142 rdf:type schema:Person
    143 sg:person.010733427701.66 schema:affiliation grid-institutes:grid.511309.f
    144 schema:familyName Gao
    145 schema:givenName Chen
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010733427701.66
    147 rdf:type schema:Person
    148 sg:person.012063433777.75 schema:affiliation grid-institutes:grid.511309.f
    149 schema:familyName Hong
    150 schema:givenName Bin
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012063433777.75
    152 rdf:type schema:Person
    153 sg:person.014240420227.53 schema:affiliation grid-institutes:grid.412097.9
    154 schema:familyName Kang
    155 schema:givenName Chaoyang
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014240420227.53
    157 rdf:type schema:Person
    158 sg:person.015467665336.04 schema:affiliation grid-institutes:grid.59053.3a
    159 schema:familyName Li
    160 schema:givenName Xiaoguang
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015467665336.04
    162 rdf:type schema:Person
    163 sg:person.0764727260.84 schema:affiliation grid-institutes:grid.256896.6
    164 schema:familyName Yang
    165 schema:givenName Yuanjun
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764727260.84
    167 rdf:type schema:Person
    168 sg:pub.10.1007/s10854-015-2972-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012088964
    169 https://doi.org/10.1007/s10854-015-2972-9
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s10854-015-3310-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022055105
    172 https://doi.org/10.1007/s10854-015-3310-y
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s10854-016-4384-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037976559
    175 https://doi.org/10.1007/s10854-016-4384-x
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s10854-017-6547-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083882124
    178 https://doi.org/10.1007/s10854-017-6547-9
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s10854-017-7603-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090905178
    181 https://doi.org/10.1007/s10854-017-7603-1
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/am.2016.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012213593
    184 https://doi.org/10.1038/am.2016.139
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nmat3247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037233822
    187 https://doi.org/10.1038/nmat3247
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nmat4390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022274390
    190 https://doi.org/10.1038/nmat4390
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nmat4579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038405724
    193 https://doi.org/10.1038/nmat4579
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nmat4886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084509226
    196 https://doi.org/10.1038/nmat4886
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nmat4888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084509224
    199 https://doi.org/10.1038/nmat4888
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/srep23696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011072052
    202 https://doi.org/10.1038/srep23696
    203 rdf:type schema:CreativeWork
    204 grid-institutes:grid.256896.6 schema:alternateName School of Electronic Science and Applied Physics, and Lab of Quantum Materials and Interfaces, Hefei University of Technology, 230009, Hefei, Anhui, People’s Republic of China
    205 schema:name School of Electronic Science and Applied Physics, and Lab of Quantum Materials and Interfaces, Hefei University of Technology, 230009, Hefei, Anhui, People’s Republic of China
    206 rdf:type schema:Organization
    207 grid-institutes:grid.412097.9 schema:alternateName School of Physics and Electronic Information Engineering, Henan Polytechnic University, 454000, Jiaozuo, People’s Republic of China
    208 schema:name School of Physics and Electronic Information Engineering, Henan Polytechnic University, 454000, Jiaozuo, People’s Republic of China
    209 rdf:type schema:Organization
    210 grid-institutes:grid.511309.f schema:alternateName National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People’s Republic of China
    211 schema:name National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, People’s Republic of China
    212 rdf:type schema:Organization
    213 grid-institutes:grid.59053.3a schema:alternateName Departments of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, People’s Republic of China
    214 schema:name Departments of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, People’s Republic of China
    215 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...