Influences of Ag doping on the high energy ball milling aided sintering FeSe superconductors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01

AUTHORS

Shengnan Zhang, Jixing Liu, Jianqing Feng, Botao Shao, Chengshan Li, Pingxiang Zhang

ABSTRACT

Fe1.10Se and Fe1.15Se superconducting bulks were fabricated with high energy ball miling aided sintering process with different Ag nanoparticles addition. The influences of both Fe content and Ag addition on the phase composition, microstructures, critical temperature as well as the grain connectivity of these two systems have been systematically analyzed. It is noticed that with the increasing contents of both Fe and Ag addition, the content of non-superconducting hexagonal δ-FeSe phase decreased. The increasing superconducting phase volume ratio and critical temperatures were both confirmed by the magnetization measurements, which can be attributed to the Ag addition. On the other hand, the microstructures observation revealed the systematical change of texture structures and secondary phase contents, which was beneficial to the enhancement of intergrain connectivity. Therefore, the peak temperature on the imaginary component of AC susceptibility shifted towards higher temperatures with Ag addition, especially after a low oxygen atmosphere annealing process. The optimal superconducting properties were both obtained with 10 wt% Ag addition in Fe1.10Se and Fe1.15Se systems. More... »

PAGES

1018-1024

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-017-8001-4

DOI

http://dx.doi.org/10.1007/s10854-017-8001-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092212088


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shengnan", 
        "id": "sg:person.016043100470.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043100470.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China", 
            "School of Materials Science and Engineering, Northeastern University, 110016, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jixing", 
        "id": "sg:person.013437713223.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013437713223.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Jianqing", 
        "id": "sg:person.011110033521.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110033521.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.440722.7", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China", 
            "School of Materials Science and Engineering, Xi\u2019an University of Technology, 710048, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Botao", 
        "id": "sg:person.015365607570.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365607570.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chengshan", 
        "id": "sg:person.016362517145.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362517145.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Pingxiang", 
        "id": "sg:person.013570276106.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570276106.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1143/apex.2.083004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001245044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.2.083004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001245044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.140506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003327251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.140506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003327251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0807325105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/24/12/125003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008425312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6668/30/2/025013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009234474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/31/1/017401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012254453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/28/12/125013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013346370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-010-6136-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016606251", 
          "https://doi.org/10.1007/s00339-010-6136-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-015-2981-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019709182", 
          "https://doi.org/10.1007/s10948-015-2981-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2015.08.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027407276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2012.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028525466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2010.11.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028572260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2016.01.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030867362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031043737", 
          "https://doi.org/10.1038/ncomms1946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035406453", 
          "https://doi.org/10.1038/srep04585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552947", 
          "https://doi.org/10.1038/nmat3648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038519698", 
          "https://doi.org/10.1038/ncomms2337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2015.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039818023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmat.2015.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041497165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-014-2821-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042019726", 
          "https://doi.org/10.1007/s10948-014-2821-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/24/10/105002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044067584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/28/11/115005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045875961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/24/6/065022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046429035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/25/3/035020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047784634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2004.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048971797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2012.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052298121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.020509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053719040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.020509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053719040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2936977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057885457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.060506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.060506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7566/jpsj.83.064704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073829822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/jjap.51.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073834730"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "Fe1.10Se and Fe1.15Se superconducting bulks were fabricated with high energy ball miling aided sintering process with different Ag nanoparticles addition. The influences of both Fe content and Ag addition on the phase composition, microstructures, critical temperature as well as the grain connectivity of these two systems have been systematically analyzed. It is noticed that with the increasing contents of both Fe and Ag addition, the content of non-superconducting hexagonal \u03b4-FeSe phase decreased. The increasing superconducting phase volume ratio and critical temperatures were both confirmed by the magnetization measurements, which can be attributed to the Ag addition. On the other hand, the microstructures observation revealed the systematical change of texture structures and secondary phase contents, which was beneficial to the enhancement of intergrain connectivity. Therefore, the peak temperature on the imaginary component of AC susceptibility shifted towards higher temperatures with Ag addition, especially after a low oxygen atmosphere annealing process. The optimal superconducting properties were both obtained with 10 wt% Ag addition in Fe1.10Se and Fe1.15Se systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10854-017-8001-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Influences of Ag doping on the high energy ball milling aided sintering FeSe superconductors", 
    "pagination": "1018-1024", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b8bd06e2dd75e514acd08e5607159efb65ecd723f084e872c894265723d05be8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-017-8001-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092212088"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-017-8001-4", 
      "https://app.dimensions.ai/details/publication/pub.1092212088"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10854-017-8001-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-8001-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-8001-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-8001-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-8001-4'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-017-8001-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nda7a3c39e0db49519e72bbf35f56d5cf
4 schema:citation sg:pub.10.1007/s00339-010-6136-8
5 sg:pub.10.1007/s10948-014-2821-8
6 sg:pub.10.1007/s10948-015-2981-1
7 sg:pub.10.1038/ncomms1946
8 sg:pub.10.1038/ncomms2337
9 sg:pub.10.1038/nmat3648
10 sg:pub.10.1038/srep04585
11 https://doi.org/10.1016/j.ceramint.2015.08.029
12 https://doi.org/10.1016/j.jmat.2015.04.004
13 https://doi.org/10.1016/j.matchemphys.2015.08.028
14 https://doi.org/10.1016/j.matlet.2016.01.139
15 https://doi.org/10.1016/j.physc.2004.02.038
16 https://doi.org/10.1016/j.physc.2012.03.002
17 https://doi.org/10.1016/j.physc.2012.03.018
18 https://doi.org/10.1016/j.ssc.2010.11.030
19 https://doi.org/10.1063/1.2936977
20 https://doi.org/10.1073/pnas.0807325105
21 https://doi.org/10.1088/0256-307x/31/1/017401
22 https://doi.org/10.1088/0953-2048/24/10/105002
23 https://doi.org/10.1088/0953-2048/24/12/125003
24 https://doi.org/10.1088/0953-2048/24/6/065022
25 https://doi.org/10.1088/0953-2048/25/3/035020
26 https://doi.org/10.1088/0953-2048/28/11/115005
27 https://doi.org/10.1088/0953-2048/28/12/125013
28 https://doi.org/10.1088/1361-6668/30/2/025013
29 https://doi.org/10.1103/physrevb.81.020509
30 https://doi.org/10.1103/physrevb.88.140506
31 https://doi.org/10.1103/physrevb.89.060506
32 https://doi.org/10.1143/apex.2.083004
33 https://doi.org/10.7566/jpsj.83.064704
34 https://doi.org/10.7567/jjap.51.010101
35 schema:datePublished 2018-01
36 schema:datePublishedReg 2018-01-01
37 schema:description Fe1.10Se and Fe1.15Se superconducting bulks were fabricated with high energy ball miling aided sintering process with different Ag nanoparticles addition. The influences of both Fe content and Ag addition on the phase composition, microstructures, critical temperature as well as the grain connectivity of these two systems have been systematically analyzed. It is noticed that with the increasing contents of both Fe and Ag addition, the content of non-superconducting hexagonal δ-FeSe phase decreased. The increasing superconducting phase volume ratio and critical temperatures were both confirmed by the magnetization measurements, which can be attributed to the Ag addition. On the other hand, the microstructures observation revealed the systematical change of texture structures and secondary phase contents, which was beneficial to the enhancement of intergrain connectivity. Therefore, the peak temperature on the imaginary component of AC susceptibility shifted towards higher temperatures with Ag addition, especially after a low oxygen atmosphere annealing process. The optimal superconducting properties were both obtained with 10 wt% Ag addition in Fe1.10Se and Fe1.15Se systems.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N001daec6c66544de9fa922e3d253d44e
42 N3d468585cb644068a7a63bdd18aef2bb
43 sg:journal.1136825
44 schema:name Influences of Ag doping on the high energy ball milling aided sintering FeSe superconductors
45 schema:pagination 1018-1024
46 schema:productId N06dfca5af00c4a07891fe01d9dbe6f1e
47 N754ff65abee84e368a6965af1a7090e2
48 N85481192ff844491bb24fdecb1ee9848
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092212088
50 https://doi.org/10.1007/s10854-017-8001-4
51 schema:sdDatePublished 2019-04-10T20:54
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N55cbba1018164e179eedd5b9f6368b43
54 schema:url https://link.springer.com/10.1007%2Fs10854-017-8001-4
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N001daec6c66544de9fa922e3d253d44e schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 N023eedfac2964637bf79705b399f4aab rdf:first sg:person.011110033521.51
61 rdf:rest N35c0b9602a934c18931b81b0070388c6
62 N02694738d674406abeafa150cfaea7c9 rdf:first sg:person.013437713223.56
63 rdf:rest N023eedfac2964637bf79705b399f4aab
64 N06dfca5af00c4a07891fe01d9dbe6f1e schema:name dimensions_id
65 schema:value pub.1092212088
66 rdf:type schema:PropertyValue
67 N35c0b9602a934c18931b81b0070388c6 rdf:first sg:person.015365607570.82
68 rdf:rest N8219ed3fe852472692534ada397ccb7e
69 N3d468585cb644068a7a63bdd18aef2bb schema:volumeNumber 29
70 rdf:type schema:PublicationVolume
71 N44f4d35fdfe34c0cad4c9152701e7502 rdf:first sg:person.013570276106.17
72 rdf:rest rdf:nil
73 N55cbba1018164e179eedd5b9f6368b43 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N754ff65abee84e368a6965af1a7090e2 schema:name readcube_id
76 schema:value b8bd06e2dd75e514acd08e5607159efb65ecd723f084e872c894265723d05be8
77 rdf:type schema:PropertyValue
78 N8219ed3fe852472692534ada397ccb7e rdf:first sg:person.016362517145.73
79 rdf:rest N44f4d35fdfe34c0cad4c9152701e7502
80 N85481192ff844491bb24fdecb1ee9848 schema:name doi
81 schema:value 10.1007/s10854-017-8001-4
82 rdf:type schema:PropertyValue
83 Nda7a3c39e0db49519e72bbf35f56d5cf rdf:first sg:person.016043100470.96
84 rdf:rest N02694738d674406abeafa150cfaea7c9
85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
86 schema:name Engineering
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
89 schema:name Materials Engineering
90 rdf:type schema:DefinedTerm
91 sg:journal.1136825 schema:issn 0957-4522
92 1573-482X
93 schema:name Journal of Materials Science: Materials in Electronics
94 rdf:type schema:Periodical
95 sg:person.011110033521.51 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
96 schema:familyName Feng
97 schema:givenName Jianqing
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110033521.51
99 rdf:type schema:Person
100 sg:person.013437713223.56 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
101 schema:familyName Liu
102 schema:givenName Jixing
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013437713223.56
104 rdf:type schema:Person
105 sg:person.013570276106.17 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
106 schema:familyName Zhang
107 schema:givenName Pingxiang
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570276106.17
109 rdf:type schema:Person
110 sg:person.015365607570.82 schema:affiliation https://www.grid.ac/institutes/grid.440722.7
111 schema:familyName Shao
112 schema:givenName Botao
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365607570.82
114 rdf:type schema:Person
115 sg:person.016043100470.96 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
116 schema:familyName Zhang
117 schema:givenName Shengnan
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043100470.96
119 rdf:type schema:Person
120 sg:person.016362517145.73 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
121 schema:familyName Li
122 schema:givenName Chengshan
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362517145.73
124 rdf:type schema:Person
125 sg:pub.10.1007/s00339-010-6136-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016606251
126 https://doi.org/10.1007/s00339-010-6136-8
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10948-014-2821-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042019726
129 https://doi.org/10.1007/s10948-014-2821-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10948-015-2981-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019709182
132 https://doi.org/10.1007/s10948-015-2981-1
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/ncomms1946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031043737
135 https://doi.org/10.1038/ncomms1946
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/ncomms2337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038519698
138 https://doi.org/10.1038/ncomms2337
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nmat3648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552947
141 https://doi.org/10.1038/nmat3648
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/srep04585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035406453
144 https://doi.org/10.1038/srep04585
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ceramint.2015.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039818023
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jmat.2015.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041497165
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.matchemphys.2015.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027407276
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.matlet.2016.01.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030867362
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.physc.2004.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048971797
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.physc.2012.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028525466
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.physc.2012.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052298121
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ssc.2010.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028572260
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1063/1.2936977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057885457
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.0807325105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783730
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0256-307x/31/1/017401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012254453
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/0953-2048/24/10/105002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044067584
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0953-2048/24/12/125003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008425312
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/0953-2048/24/6/065022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046429035
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0953-2048/25/3/035020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784634
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0953-2048/28/11/115005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045875961
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/0953-2048/28/12/125013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013346370
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/1361-6668/30/2/025013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009234474
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.81.020509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053719040
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.88.140506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003327251
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.89.060506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642850
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1143/apex.2.083004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001245044
189 rdf:type schema:CreativeWork
190 https://doi.org/10.7566/jpsj.83.064704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073829822
191 rdf:type schema:CreativeWork
192 https://doi.org/10.7567/jjap.51.010101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073834730
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.412252.2 schema:alternateName Northeastern University
195 schema:name School of Materials Science and Engineering, Northeastern University, 110016, Shenyang, China
196 Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi’an, China
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.440722.7 schema:alternateName Xi'an University of Technology
199 schema:name School of Materials Science and Engineering, Xi’an University of Technology, 710048, Xi’an, China
200 Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi’an, China
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.464401.3 schema:alternateName Northwest Institute For Non-Ferrous Metal Research
203 schema:name Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi’an, China
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...