The microwave absorbing properties of CoFe2 attached single walled carbon nanotube/BaFe12O19 nanocomposites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

Manli Wang, Kang An, Yanghao Fang, Guotong Wei, Jie Yang, Leimei Sheng, Liming Yu, Xinluo Zhao

ABSTRACT

The CoFe2 attached single-walled carbon nanotubes (CoFe2@SWCNTs) and BaFe12O19 ferrite nanocomposites with different CoFe2@SWCNTs weight ratios (1, 3, 5, 7 wt%) were synthesized by a simple combination process. Then, the electromagnetic and microwave absorption properties were systematically investigated by a vector network analyzer in the frequency range of 2–18 GHz. High-quality CoFe2@SWCNTs were prepared by a direct current arc discharge method in one-step. BaFe12O19 nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The CoFe2@SWCNT/BaFe12O19 nanocomposites exhibited an efficient reflection loss (RL) and a wide absorption bandwidth. The minimum RL of −54.13 dB was observed at 11.84 GHz for the nanocomposite (5 wt% CoFe2@SWCNTs) with a thickness of 2.8 mm, 3.4 times greater than those without CoFe2@SWCNTs, and a broad absorption bandwidth of 4.64 GHz (<−10 dB) was achieved. In addition, the nanocomposite (1 wt% CoFe2@SWCNTs) shows a broader effective microwave absorption bandwidth of 7.12 GHz with a thickness of 1.9 mm. The experimental results reveal that the absorbing properties of the nanocomposites are greatly improved by controlling the CoFe2@SWCNTs weight ratio and the matching thickness of the absorber. This CoFe2@SWCNT/BaFe12O19 nanocomposite is anticipated to be applied in advanced microwave absorbers. More... »

PAGES

12475-12483

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-017-7069-1

DOI

http://dx.doi.org/10.1007/s10854-017-7069-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085397814


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Department of Physics, Institute of Low-Dimensional Carbons and Device Physics, Shanghai University, 200444, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Manli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Department of Physics, Institute of Low-Dimensional Carbons and Device Physics, Shanghai University, 200444, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Kang", 
        "id": "sg:person.07422061063.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07422061063.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Department of Physics, Institute of Low-Dimensional Carbons and Device Physics, Shanghai University, 200444, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Yanghao", 
        "id": "sg:person.011242365157.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011242365157.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Department of Physics, Institute of Low-Dimensional Carbons and Device Physics, Shanghai University, 200444, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Guotong", 
        "id": "sg:person.012227155307.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227155307.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Department of Physics, Institute of Low-Dimensional Carbons and Device Physics, Shanghai University, 200444, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jie", 
        "id": "sg:person.0754704571.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754704571.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Department of Physics, Institute of Low-Dimensional Carbons and Device Physics, Shanghai University, 200444, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheng", 
        "givenName": "Leimei", 
        "id": "sg:person.014711401732.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014711401732.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Department of Physics, Institute of Low-Dimensional Carbons and Device Physics, Shanghai University, 200444, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Liming", 
        "id": "sg:person.014417750447.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014417750447.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Department of Physics, Institute of Low-Dimensional Carbons and Device Physics, Shanghai University, 200444, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xinluo", 
        "id": "sg:person.01161065754.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161065754.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001942447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mseb.2015.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006807037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4873636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008159069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar0101640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008522708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar0101640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008522708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.39332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012276222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4951002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012768741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2009.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017930520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2013.11.208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018160856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mseb.2012.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020778435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2014.01.096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023062799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr33962a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027357652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(02)00066-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027469352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solidstatesciences.2009.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200306460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030524480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2014.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034111036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/40/17/056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037101827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2011.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039469304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2005.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040480145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044411013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2010.11.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044507797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2004.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045780530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048143373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2012.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049941783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am500862g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050601731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp04745a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051781875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm33124a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053672675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp202078p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056082501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp202078p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056082501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp4000544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056093461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1484248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057711370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1623934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057727001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2841461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057878570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.355476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057973363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.13870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.13870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.278872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061110279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tim.1970.4313932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061633481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-00372-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084130505", 
          "https://doi.org/10.1038/s41598-017-00372-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "The CoFe2 attached single-walled carbon nanotubes (CoFe2@SWCNTs) and BaFe12O19 ferrite nanocomposites with different CoFe2@SWCNTs weight ratios (1, 3, 5, 7 wt%) were synthesized by a simple combination process. Then, the electromagnetic and microwave absorption properties were systematically investigated by a vector network analyzer in the frequency range of 2\u201318 GHz. High-quality CoFe2@SWCNTs were prepared by a direct current arc discharge method in one-step. BaFe12O19 nanocrystals were synthesized by a nitrate citric acid sol\u2013gel auto-ignition method. The CoFe2@SWCNT/BaFe12O19 nanocomposites exhibited an efficient reflection loss (RL) and a wide absorption bandwidth. The minimum RL of \u221254.13 dB was observed at 11.84 GHz for the nanocomposite (5 wt% CoFe2@SWCNTs) with a thickness of 2.8 mm, 3.4 times greater than those without CoFe2@SWCNTs, and a broad absorption bandwidth of 4.64 GHz (<\u221210 dB) was achieved. In addition, the nanocomposite (1 wt% CoFe2@SWCNTs) shows a broader effective microwave absorption bandwidth of 7.12 GHz with a thickness of 1.9 mm. The experimental results reveal that the absorbing properties of the nanocomposites are greatly improved by controlling the CoFe2@SWCNTs weight ratio and the matching thickness of the absorber. This CoFe2@SWCNT/BaFe12O19 nanocomposite is anticipated to be applied in advanced microwave absorbers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10854-017-7069-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7209099", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7013803", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5004968", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "17", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "The microwave absorbing properties of CoFe2 attached single walled carbon nanotube/BaFe12O19 nanocomposites", 
    "pagination": "12475-12483", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e225e3a314f95a723007341b5a1d44f45718bb0bfce8556e403b30d0d84c37ca"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-017-7069-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085397814"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-017-7069-1", 
      "https://app.dimensions.ai/details/publication/pub.1085397814"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54316_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10854-017-7069-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-7069-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-7069-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-7069-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-7069-1'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-017-7069-1 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N97c60815d4784f728eb557bfaa350eba
4 schema:citation sg:pub.10.1038/s41598-017-00372-9
5 https://doi.org/10.1002/adma.200306460
6 https://doi.org/10.1002/app.39332
7 https://doi.org/10.1016/j.carbon.2014.10.031
8 https://doi.org/10.1016/j.ceramint.2012.02.034
9 https://doi.org/10.1016/j.jallcom.2013.11.208
10 https://doi.org/10.1016/j.jallcom.2014.01.096
11 https://doi.org/10.1016/j.jallcom.2015.05.009
12 https://doi.org/10.1016/j.jmmm.2005.06.020
13 https://doi.org/10.1016/j.jmmm.2011.10.027
14 https://doi.org/10.1016/j.jmmm.2015.05.002
15 https://doi.org/10.1016/j.matdes.2010.11.064
16 https://doi.org/10.1016/j.matlet.2009.09.003
17 https://doi.org/10.1016/j.mseb.2012.08.022
18 https://doi.org/10.1016/j.mseb.2015.02.008
19 https://doi.org/10.1016/j.physrep.2004.10.006
20 https://doi.org/10.1016/j.polymer.2009.11.012
21 https://doi.org/10.1016/j.solidstatesciences.2009.04.014
22 https://doi.org/10.1016/s0008-6223(02)00066-0
23 https://doi.org/10.1021/am500862g
24 https://doi.org/10.1021/ar0101640
25 https://doi.org/10.1021/jp202078p
26 https://doi.org/10.1021/jp4000544
27 https://doi.org/10.1039/c2jm33124a
28 https://doi.org/10.1039/c3nr33962a
29 https://doi.org/10.1039/c4cp04745a
30 https://doi.org/10.1063/1.1484248
31 https://doi.org/10.1063/1.1623934
32 https://doi.org/10.1063/1.2841461
33 https://doi.org/10.1063/1.355476
34 https://doi.org/10.1063/1.4873636
35 https://doi.org/10.1063/1.4951002
36 https://doi.org/10.1088/0022-3727/40/17/056
37 https://doi.org/10.1103/physrevb.58.13870
38 https://doi.org/10.1103/physrevlett.73.676
39 https://doi.org/10.1103/physrevlett.84.1324
40 https://doi.org/10.1109/20.278872
41 https://doi.org/10.1109/tim.1970.4313932
42 schema:datePublished 2017-09
43 schema:datePublishedReg 2017-09-01
44 schema:description The CoFe2 attached single-walled carbon nanotubes (CoFe2@SWCNTs) and BaFe12O19 ferrite nanocomposites with different CoFe2@SWCNTs weight ratios (1, 3, 5, 7 wt%) were synthesized by a simple combination process. Then, the electromagnetic and microwave absorption properties were systematically investigated by a vector network analyzer in the frequency range of 2–18 GHz. High-quality CoFe2@SWCNTs were prepared by a direct current arc discharge method in one-step. BaFe12O19 nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The CoFe2@SWCNT/BaFe12O19 nanocomposites exhibited an efficient reflection loss (RL) and a wide absorption bandwidth. The minimum RL of −54.13 dB was observed at 11.84 GHz for the nanocomposite (5 wt% CoFe2@SWCNTs) with a thickness of 2.8 mm, 3.4 times greater than those without CoFe2@SWCNTs, and a broad absorption bandwidth of 4.64 GHz (<−10 dB) was achieved. In addition, the nanocomposite (1 wt% CoFe2@SWCNTs) shows a broader effective microwave absorption bandwidth of 7.12 GHz with a thickness of 1.9 mm. The experimental results reveal that the absorbing properties of the nanocomposites are greatly improved by controlling the CoFe2@SWCNTs weight ratio and the matching thickness of the absorber. This CoFe2@SWCNT/BaFe12O19 nanocomposite is anticipated to be applied in advanced microwave absorbers.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N2a5b10bd50834d7eb77db51546d55be3
49 N52487dc801a447859b50d09289d8cfe9
50 sg:journal.1136825
51 schema:name The microwave absorbing properties of CoFe2 attached single walled carbon nanotube/BaFe12O19 nanocomposites
52 schema:pagination 12475-12483
53 schema:productId N82f19b79a66d495fa88586d74aea3736
54 N945bc20d005f4f9cbeb4e62781afde7d
55 Nb8962ba96c1d41a3934066420d5974a7
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085397814
57 https://doi.org/10.1007/s10854-017-7069-1
58 schema:sdDatePublished 2019-04-11T10:18
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N2ad9d4f796174d91adf3782de1da6972
61 schema:url https://link.springer.com/10.1007%2Fs10854-017-7069-1
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0400e0309fec4e8ea888414e2d1be6db rdf:first sg:person.01161065754.38
66 rdf:rest rdf:nil
67 N257847ed5d8f41f8a417ee97fd288d21 rdf:first sg:person.012227155307.39
68 rdf:rest Nfd9f21a5c0d348ee9082ea26c384759f
69 N2a5b10bd50834d7eb77db51546d55be3 schema:issueNumber 17
70 rdf:type schema:PublicationIssue
71 N2ad9d4f796174d91adf3782de1da6972 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N52487dc801a447859b50d09289d8cfe9 schema:volumeNumber 28
74 rdf:type schema:PublicationVolume
75 N56d320319c254800a848ad6d5278e891 rdf:first sg:person.014417750447.24
76 rdf:rest N0400e0309fec4e8ea888414e2d1be6db
77 N77222e5e53b642c7b9cc27cc0a336dac rdf:first sg:person.011242365157.30
78 rdf:rest N257847ed5d8f41f8a417ee97fd288d21
79 N82f19b79a66d495fa88586d74aea3736 schema:name dimensions_id
80 schema:value pub.1085397814
81 rdf:type schema:PropertyValue
82 N8595b67c0a94425598900f000b20070a schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
83 schema:familyName Wang
84 schema:givenName Manli
85 rdf:type schema:Person
86 N945bc20d005f4f9cbeb4e62781afde7d schema:name readcube_id
87 schema:value e225e3a314f95a723007341b5a1d44f45718bb0bfce8556e403b30d0d84c37ca
88 rdf:type schema:PropertyValue
89 N97c60815d4784f728eb557bfaa350eba rdf:first N8595b67c0a94425598900f000b20070a
90 rdf:rest Nfd754fd0697c4abd8a215acb89550857
91 Nb8962ba96c1d41a3934066420d5974a7 schema:name doi
92 schema:value 10.1007/s10854-017-7069-1
93 rdf:type schema:PropertyValue
94 Nf54789dece89485c95a2cd9b49c6f2aa rdf:first sg:person.014711401732.21
95 rdf:rest N56d320319c254800a848ad6d5278e891
96 Nfd754fd0697c4abd8a215acb89550857 rdf:first sg:person.07422061063.43
97 rdf:rest N77222e5e53b642c7b9cc27cc0a336dac
98 Nfd9f21a5c0d348ee9082ea26c384759f rdf:first sg:person.0754704571.41
99 rdf:rest Nf54789dece89485c95a2cd9b49c6f2aa
100 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
101 schema:name Technology
102 rdf:type schema:DefinedTerm
103 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
104 schema:name Communications Technologies
105 rdf:type schema:DefinedTerm
106 sg:grant.5004968 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-017-7069-1
107 rdf:type schema:MonetaryGrant
108 sg:grant.7013803 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-017-7069-1
109 rdf:type schema:MonetaryGrant
110 sg:grant.7209099 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-017-7069-1
111 rdf:type schema:MonetaryGrant
112 sg:journal.1136825 schema:issn 0957-4522
113 1573-482X
114 schema:name Journal of Materials Science: Materials in Electronics
115 rdf:type schema:Periodical
116 sg:person.011242365157.30 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
117 schema:familyName Fang
118 schema:givenName Yanghao
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011242365157.30
120 rdf:type schema:Person
121 sg:person.01161065754.38 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
122 schema:familyName Zhao
123 schema:givenName Xinluo
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161065754.38
125 rdf:type schema:Person
126 sg:person.012227155307.39 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
127 schema:familyName Wei
128 schema:givenName Guotong
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227155307.39
130 rdf:type schema:Person
131 sg:person.014417750447.24 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
132 schema:familyName Yu
133 schema:givenName Liming
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014417750447.24
135 rdf:type schema:Person
136 sg:person.014711401732.21 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
137 schema:familyName Sheng
138 schema:givenName Leimei
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014711401732.21
140 rdf:type schema:Person
141 sg:person.07422061063.43 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
142 schema:familyName An
143 schema:givenName Kang
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07422061063.43
145 rdf:type schema:Person
146 sg:person.0754704571.41 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
147 schema:familyName Yang
148 schema:givenName Jie
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754704571.41
150 rdf:type schema:Person
151 sg:pub.10.1038/s41598-017-00372-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130505
152 https://doi.org/10.1038/s41598-017-00372-9
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/adma.200306460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030524480
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/app.39332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012276222
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.carbon.2014.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034111036
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ceramint.2012.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049941783
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jallcom.2013.11.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018160856
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jallcom.2014.01.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023062799
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jallcom.2015.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001942447
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jmmm.2005.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040480145
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jmmm.2011.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039469304
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jmmm.2015.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048143373
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.matdes.2010.11.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044507797
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.matlet.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044411013
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.mseb.2012.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020778435
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.mseb.2015.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006807037
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.physrep.2004.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045780530
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.polymer.2009.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017930520
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.solidstatesciences.2009.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027621934
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0008-6223(02)00066-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027469352
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/am500862g schema:sameAs https://app.dimensions.ai/details/publication/pub.1050601731
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/ar0101640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008522708
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/jp202078p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056082501
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/jp4000544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056093461
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1039/c2jm33124a schema:sameAs https://app.dimensions.ai/details/publication/pub.1053672675
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1039/c3nr33962a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027357652
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1039/c4cp04745a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051781875
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.1484248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057711370
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1063/1.1623934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057727001
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1063/1.2841461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057878570
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1063/1.355476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057973363
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1063/1.4873636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008159069
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1063/1.4951002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012768741
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1088/0022-3727/40/17/056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037101827
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.58.13870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060589281
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.73.676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810204
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.84.1324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820716
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/20.278872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061110279
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/tim.1970.4313932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061633481
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.39436.3b schema:alternateName Shanghai University
229 schema:name Department of Physics, Institute of Low-Dimensional Carbons and Device Physics, Shanghai University, 200444, Shanghai, China
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...