Improving superconducting properties of Bi-2212 tapes by Ca nonstoichiometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08

AUTHORS

Shengnan Zhang, Chengshan Li, Qingbin Hao, Jianqing Feng, André Sulpice, Pingxiang Zhang

ABSTRACT

Single filament tapes with different Ca contents Bi2.1Sr1.96CaxCu2.0O8+δ (x = 0.90, 0.95, 1.00, and 1.05) were prepared by powder in tube (PIT) process. The introduction of Ca nonstoichiometry caused systematic changes in the phase compositions of the final tapes, thus changing the chemical compositions of Bi-2212 phase. The increase of critical temperature Tc from 81.2 to 84.2 K can be attributed to the carrier concentration change. The critical current density, Jc and flux pinning properties were measured and evaluated at 4.2 K and high field (0–20 T) with the variation of Ca content. Obvious improvements of Jc were obtained with the Ca content of x = 0.95 and 1.05 under perpendicular field, which implied that the chemical compositions changes of Ca could effectively lead to the formation of lattice defects, thus enhancing the flux pinning properties on the superconducting layers. More... »

PAGES

11521-11527

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-017-6949-8

DOI

http://dx.doi.org/10.1007/s10854-017-6949-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084964040


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shengnan", 
        "id": "sg:person.016043100470.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043100470.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chengshan", 
        "id": "sg:person.016362517145.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362517145.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Qingbin", 
        "id": "sg:person.07652301570.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652301570.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Jianqing", 
        "id": "sg:person.011110033521.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110033521.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "French National Centre for Scientific Research, 38042, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sulpice", 
        "givenName": "Andr\u00e9", 
        "id": "sg:person.015204121557.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015204121557.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Pingxiang", 
        "id": "sg:person.013570276106.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570276106.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.mseb.2010.01.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003924903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004887588", 
          "https://doi.org/10.1007/bf02653013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004887588", 
          "https://doi.org/10.1007/bf02653013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(94)90806-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005132607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(94)90806-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005132607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/17/4/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005180557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.077002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005688241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.077002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005688241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0964-1807(95)00062-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011085017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2010.07.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012493391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(03)00087-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014121338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/21/4/045001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016594218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00356623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017173599", 
          "https://doi.org/10.1007/bf00356623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(99)02450-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019645291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-015-2981-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019709182", 
          "https://doi.org/10.1007/s10948-015-2981-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018673602045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024604637", 
          "https://doi.org/10.1023/a:1018673602045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(95)00303-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024943453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026979958", 
          "https://doi.org/10.1038/nature07400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-011-1346-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029867743", 
          "https://doi.org/10.1007/s10948-011-1346-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpcs.2008.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032393411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040651649", 
          "https://doi.org/10.1038/nmat3887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042416742", 
          "https://doi.org/10.1038/nature05881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.19940060604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046269762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(95)00643-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046569837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.19920040714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047027164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.19920040714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047027164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02818069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051161909", 
          "https://doi.org/10.1007/bf02818069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02818069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051161909", 
          "https://doi.org/10.1007/bf02818069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1356055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057698320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.6418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.6418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.1452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.1452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.184522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.184522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/77.620868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061224668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2005.847648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061505389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2007.898447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061507130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2009.2039793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061509012"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08", 
    "datePublishedReg": "2017-08-01", 
    "description": "Single filament tapes with different Ca contents Bi2.1Sr1.96CaxCu2.0O8+\u03b4 (x = 0.90, 0.95, 1.00, and 1.05) were prepared by powder in tube (PIT) process. The introduction of Ca nonstoichiometry caused systematic changes in the phase compositions of the final tapes, thus changing the chemical compositions of Bi-2212 phase. The increase of critical temperature Tc from 81.2 to 84.2 K can be attributed to the carrier concentration change. The critical current density, Jc and flux pinning properties were measured and evaluated at 4.2 K and high field (0\u201320 T) with the variation of Ca content. Obvious improvements of Jc were obtained with the Ca content of x = 0.95 and 1.05 under perpendicular field, which implied that the chemical compositions changes of Ca could effectively lead to the formation of lattice defects, thus enhancing the flux pinning properties on the superconducting layers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10854-017-6949-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "15", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Improving superconducting properties of Bi-2212 tapes by Ca nonstoichiometry", 
    "pagination": "11521-11527", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6a0e15deb27065f374742282f415d6f33ea9d296f1d028df26111a8662539ae8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-017-6949-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084964040"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-017-6949-8", 
      "https://app.dimensions.ai/details/publication/pub.1084964040"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89786_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10854-017-6949-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6949-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6949-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6949-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6949-8'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-017-6949-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc4b43af8d9cd4e19824fc31b9f7451b9
4 schema:citation sg:pub.10.1007/bf00356623
5 sg:pub.10.1007/bf02653013
6 sg:pub.10.1007/bf02818069
7 sg:pub.10.1007/s10948-011-1346-7
8 sg:pub.10.1007/s10948-015-2981-1
9 sg:pub.10.1023/a:1018673602045
10 sg:pub.10.1038/nature05881
11 sg:pub.10.1038/nature07400
12 sg:pub.10.1038/nmat3887
13 https://doi.org/10.1002/adma.19920040714
14 https://doi.org/10.1002/adma.19940060604
15 https://doi.org/10.1016/0921-4534(94)90806-0
16 https://doi.org/10.1016/0921-4534(95)00303-7
17 https://doi.org/10.1016/0921-4534(95)00643-5
18 https://doi.org/10.1016/0964-1807(95)00062-a
19 https://doi.org/10.1016/j.jpcs.2008.08.003
20 https://doi.org/10.1016/j.mseb.2010.01.030
21 https://doi.org/10.1016/j.physb.2010.07.042
22 https://doi.org/10.1016/s0304-8853(03)00087-8
23 https://doi.org/10.1016/s0921-4526(99)02450-3
24 https://doi.org/10.1063/1.1356055
25 https://doi.org/10.1088/0953-2048/17/4/012
26 https://doi.org/10.1088/0953-2048/21/4/045001
27 https://doi.org/10.1103/physrevb.41.6418
28 https://doi.org/10.1103/physrevb.62.1452
29 https://doi.org/10.1103/physrevb.70.184522
30 https://doi.org/10.1103/physrevlett.105.077002
31 https://doi.org/10.1103/physrevlett.75.4114
32 https://doi.org/10.1109/77.620868
33 https://doi.org/10.1109/tasc.2005.847648
34 https://doi.org/10.1109/tasc.2007.898447
35 https://doi.org/10.1109/tasc.2009.2039793
36 schema:datePublished 2017-08
37 schema:datePublishedReg 2017-08-01
38 schema:description Single filament tapes with different Ca contents Bi2.1Sr1.96CaxCu2.0O8+δ (x = 0.90, 0.95, 1.00, and 1.05) were prepared by powder in tube (PIT) process. The introduction of Ca nonstoichiometry caused systematic changes in the phase compositions of the final tapes, thus changing the chemical compositions of Bi-2212 phase. The increase of critical temperature Tc from 81.2 to 84.2 K can be attributed to the carrier concentration change. The critical current density, Jc and flux pinning properties were measured and evaluated at 4.2 K and high field (0–20 T) with the variation of Ca content. Obvious improvements of Jc were obtained with the Ca content of x = 0.95 and 1.05 under perpendicular field, which implied that the chemical compositions changes of Ca could effectively lead to the formation of lattice defects, thus enhancing the flux pinning properties on the superconducting layers.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N5acc7fceedfb43b3801fb2c290edd2b3
43 N9e6311e50f3f4e418208575185fafca4
44 sg:journal.1136825
45 schema:name Improving superconducting properties of Bi-2212 tapes by Ca nonstoichiometry
46 schema:pagination 11521-11527
47 schema:productId N228abadf26824310b51565aa035a6f72
48 N4f06c3c5cc324a108dea33d3856e46f0
49 Nf387e1ffaadf49ca9f2dda437523e74b
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084964040
51 https://doi.org/10.1007/s10854-017-6949-8
52 schema:sdDatePublished 2019-04-11T09:50
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N0a1cee24450746d9b94feadf1cbf2c38
55 schema:url https://link.springer.com/10.1007%2Fs10854-017-6949-8
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N05a8703e00504f8fb597f3225a66285e rdf:first sg:person.016362517145.73
60 rdf:rest N8e8cba38736343328a2fd08674b3fdfa
61 N0a1cee24450746d9b94feadf1cbf2c38 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N21743466dcb746a6ad61ce9c4eea08bb rdf:first sg:person.015204121557.08
64 rdf:rest N92b653795a3a452698f775661b3ae936
65 N228abadf26824310b51565aa035a6f72 schema:name dimensions_id
66 schema:value pub.1084964040
67 rdf:type schema:PropertyValue
68 N4f06c3c5cc324a108dea33d3856e46f0 schema:name readcube_id
69 schema:value 6a0e15deb27065f374742282f415d6f33ea9d296f1d028df26111a8662539ae8
70 rdf:type schema:PropertyValue
71 N5acc7fceedfb43b3801fb2c290edd2b3 schema:issueNumber 15
72 rdf:type schema:PublicationIssue
73 N8e8cba38736343328a2fd08674b3fdfa rdf:first sg:person.07652301570.11
74 rdf:rest Nd066e29118064d13b525fe10378199ab
75 N92b653795a3a452698f775661b3ae936 rdf:first sg:person.013570276106.17
76 rdf:rest rdf:nil
77 N9e6311e50f3f4e418208575185fafca4 schema:volumeNumber 28
78 rdf:type schema:PublicationVolume
79 Nc4b43af8d9cd4e19824fc31b9f7451b9 rdf:first sg:person.016043100470.96
80 rdf:rest N05a8703e00504f8fb597f3225a66285e
81 Nd066e29118064d13b525fe10378199ab rdf:first sg:person.011110033521.51
82 rdf:rest N21743466dcb746a6ad61ce9c4eea08bb
83 Nf387e1ffaadf49ca9f2dda437523e74b schema:name doi
84 schema:value 10.1007/s10854-017-6949-8
85 rdf:type schema:PropertyValue
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
90 schema:name Materials Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1136825 schema:issn 0957-4522
93 1573-482X
94 schema:name Journal of Materials Science: Materials in Electronics
95 rdf:type schema:Periodical
96 sg:person.011110033521.51 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
97 schema:familyName Feng
98 schema:givenName Jianqing
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110033521.51
100 rdf:type schema:Person
101 sg:person.013570276106.17 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
102 schema:familyName Zhang
103 schema:givenName Pingxiang
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570276106.17
105 rdf:type schema:Person
106 sg:person.015204121557.08 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
107 schema:familyName Sulpice
108 schema:givenName André
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015204121557.08
110 rdf:type schema:Person
111 sg:person.016043100470.96 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
112 schema:familyName Zhang
113 schema:givenName Shengnan
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043100470.96
115 rdf:type schema:Person
116 sg:person.016362517145.73 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
117 schema:familyName Li
118 schema:givenName Chengshan
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362517145.73
120 rdf:type schema:Person
121 sg:person.07652301570.11 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
122 schema:familyName Hao
123 schema:givenName Qingbin
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652301570.11
125 rdf:type schema:Person
126 sg:pub.10.1007/bf00356623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017173599
127 https://doi.org/10.1007/bf00356623
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02653013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004887588
130 https://doi.org/10.1007/bf02653013
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf02818069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051161909
133 https://doi.org/10.1007/bf02818069
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10948-011-1346-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029867743
136 https://doi.org/10.1007/s10948-011-1346-7
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10948-015-2981-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019709182
139 https://doi.org/10.1007/s10948-015-2981-1
140 rdf:type schema:CreativeWork
141 sg:pub.10.1023/a:1018673602045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024604637
142 https://doi.org/10.1023/a:1018673602045
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature05881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416742
145 https://doi.org/10.1038/nature05881
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature07400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026979958
148 https://doi.org/10.1038/nature07400
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nmat3887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040651649
151 https://doi.org/10.1038/nmat3887
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/adma.19920040714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047027164
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/adma.19940060604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046269762
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0921-4534(94)90806-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005132607
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0921-4534(95)00303-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024943453
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0921-4534(95)00643-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046569837
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0964-1807(95)00062-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1011085017
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.jpcs.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032393411
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.mseb.2010.01.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003924903
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.physb.2010.07.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012493391
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0304-8853(03)00087-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014121338
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0921-4526(99)02450-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019645291
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1063/1.1356055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057698320
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1088/0953-2048/17/4/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005180557
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/0953-2048/21/4/045001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016594218
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.41.6418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060554099
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.62.1452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597119
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevb.70.184522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060611784
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.105.077002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005688241
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.75.4114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812232
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/77.620868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061224668
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tasc.2005.847648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061505389
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tasc.2007.898447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061507130
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tasc.2009.2039793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061509012
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
200 schema:name French National Centre for Scientific Research, 38042, Grenoble, France
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.464401.3 schema:alternateName Northwest Institute For Non-Ferrous Metal Research
203 schema:name Superconducting Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, 710016, Xi’an, China
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...