Enhanced piezoelectric properties of aluminium doped zinc oxide thin film for surface acoustic wave resonators on a CMOS platform View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-10

AUTHORS

Aliza Aini Md Ralib, Ossama Mortada, Jean Christophe Orlianges, Aurelian Crunteanu, Matthieu Chatras, Anis Nurashikin Nordin

ABSTRACT

The increase in frequency spectrum for wireless communication system has led to the growing interest in thin film electroacoustic technology that scales favorably upon miniaturization. Non-ferroelectric piezoelectric thin films such as Zinc Oxide is one of the most promising material for Complementary Metal Oxide Semiconductor-Microelectromechanical system (CMOS-MEMS) integration due to its silicon compatibility and good piezoelectric properties. This paper compares ZnO and Al doped ZnO (AZO) thin films performance characteristics when applied as CMOS-based surface acoustic wave (SAW) resonators. The interdigitated electrodes were fabricated using 0.35 μm CMOS technology followed by piezoelectric thin film deposition and probe pad patterning. Pure ZnO and AZO with 2 wt% Al2O3 have been prepared by pulse laser deposition and RF magnetron sputtering respectively. Both deposited ZnO and AZO thin films exhibited preferential crystalline growth in 002 direction. EDS analysis confirmed the incorporation of aluminium in zinc oxide thin films. High frequency electrical measurement results revealed that the devices with AZO thin film have enhanced performances as compared to devices based on ZnO thin film. It is shown that the insertion loss for AZO thin film was reduced from −65.1 to −53.5 dB and the quality factor was enhanced from 11.33 to 25.81. More significantly, the electromechanical coupling coefficient and piezoelectric coefficient were enhanced from κ = 0.044–0.069% and d31 = 5.00 to 5.41 pm/V for AZO devices compared to those based on ZnO devices, respectively. One possible explanation of these enhanced piezoelectric properties comes from the almost ideal c-axis orientation of AZO thin film as compared to pure ZnO thin films. Our results suggest that the AZO thin film can be a better candidate for surface acoustic wave resonator using the CMOS-MEMS platform. More... »

PAGES

9132-9138

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-017-6647-6

DOI

http://dx.doi.org/10.1007/s10854-017-6647-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084027465


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University, Malaysia, Kuala Lumpur, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.440422.4", 
          "name": [
            "Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University, Malaysia, Kuala Lumpur, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ralib", 
        "givenName": "Aliza Aini Md", 
        "id": "sg:person.013136661575.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013136661575.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mortada", 
        "givenName": "Ossama", 
        "id": "sg:person.010200264341.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010200264341.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlianges", 
        "givenName": "Jean Christophe", 
        "id": "sg:person.012553151573.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553151573.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crunteanu", 
        "givenName": "Aurelian", 
        "id": "sg:person.010442700266.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442700266.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatras", 
        "givenName": "Matthieu", 
        "id": "sg:person.015557641436.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015557641436.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University, Malaysia, Kuala Lumpur, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.440422.4", 
          "name": [
            "Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University, Malaysia, Kuala Lumpur, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nordin", 
        "givenName": "Anis Nurashikin", 
        "id": "sg:person.013747233506.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747233506.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-44838-9_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026334594", 
          "https://doi.org/10.1007/978-3-540-44838-9_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-015-2783-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018935105", 
          "https://doi.org/10.1007/s00542-015-2783-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-10", 
    "datePublishedReg": "2017-03-10", 
    "description": "The increase in frequency spectrum for wireless communication system has led to the growing interest in thin film electroacoustic technology that scales favorably upon miniaturization. Non-ferroelectric piezoelectric thin films such as Zinc Oxide is one of the most promising material for Complementary Metal Oxide Semiconductor-Microelectromechanical system (CMOS-MEMS) integration due to its silicon compatibility and good piezoelectric properties. This paper compares ZnO and Al doped ZnO (AZO) thin films performance characteristics when applied as CMOS-based surface acoustic wave (SAW) resonators. The interdigitated electrodes were fabricated using 0.35\u00a0\u03bcm CMOS technology followed by piezoelectric thin film deposition and probe pad patterning. Pure ZnO and AZO with 2\u00a0wt% Al2O3 have been prepared by pulse laser deposition and RF magnetron sputtering respectively. Both deposited ZnO and AZO thin films exhibited preferential crystalline growth in 002 direction. EDS analysis confirmed the incorporation of aluminium in zinc oxide thin films. High frequency electrical measurement results revealed that the devices with AZO thin film have enhanced performances as compared to devices based on ZnO thin film. It is shown that the insertion loss for AZO thin film was reduced from \u221265.1 to \u221253.5 dB and the quality factor was enhanced from 11.33 to 25.81. More significantly, the electromechanical coupling coefficient and piezoelectric coefficient were enhanced from \u03ba\u2009=\u20090.044\u20130.069% and d31\u2009=\u20095.00 to 5.41\u00a0pm/V for AZO devices compared to those based on ZnO devices, respectively. One possible explanation of these enhanced piezoelectric properties comes from the almost ideal c-axis orientation of AZO thin film as compared to pure ZnO thin films. Our results suggest that the AZO thin film can be a better candidate for surface acoustic wave resonator using the CMOS-MEMS platform.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10854-017-6647-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "AZO thin films", 
      "surface acoustic wave resonator", 
      "zinc oxide thin films", 
      "ZnO thin films", 
      "acoustic wave resonators", 
      "oxide thin films", 
      "thin films", 
      "wireless communication systems", 
      "piezoelectric properties", 
      "wave resonators", 
      "pure ZnO thin films", 
      "electrical measurement results", 
      "pulsed-laser deposition", 
      "silicon compatibility", 
      "AZO device", 
      "CMOS platform", 
      "pure ZnO", 
      "ZnO devices", 
      "communication systems", 
      "piezoelectric thin films", 
      "insertion loss", 
      "good piezoelectric properties", 
      "preferential crystalline growth", 
      "electromechanical coupling coefficient", 
      "thin film deposition", 
      "RF magnetron sputtering", 
      "zinc oxide", 
      "laser deposition", 
      "promising material", 
      "pm/V", 
      "CMOS technology", 
      "ZnO", 
      "crystalline growth", 
      "piezoelectric coefficient", 
      "resonator", 
      "quality factor", 
      "magnetron sputtering", 
      "film deposition", 
      "devices", 
      "measurement results", 
      "electroacoustic technology", 
      "incorporation of aluminum", 
      "films", 
      "EDS analysis", 
      "good candidate", 
      "coupling coefficient", 
      "frequency spectrum", 
      "system integration", 
      "performance characteristics", 
      "platform", 
      "technology", 
      "aluminum", 
      "miniaturization", 
      "deposition", 
      "axis orientation", 
      "dB", 
      "CMOS", 
      "electrode", 
      "properties", 
      "oxide", 
      "sputtering", 
      "azo", 
      "patterning", 
      "coefficient", 
      "d31", 
      "Al2O3", 
      "compatibility", 
      "performance", 
      "materials", 
      "candidates", 
      "integration", 
      "incorporation", 
      "spectra", 
      "results", 
      "characteristics", 
      "direction", 
      "orientation", 
      "system", 
      "al", 
      "paper", 
      "interest", 
      "growth", 
      "loss", 
      "increase", 
      "analysis", 
      "possible explanation", 
      "factors", 
      "explanation"
    ], 
    "name": "Enhanced piezoelectric properties of aluminium doped zinc oxide thin film for surface acoustic wave resonators on a CMOS platform", 
    "pagination": "9132-9138", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084027465"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-017-6647-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-017-6647-6", 
      "https://app.dimensions.ai/details/publication/pub.1084027465"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_723.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10854-017-6647-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6647-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6647-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6647-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6647-6'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      115 URIs      104 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-017-6647-6 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 anzsrc-for:0912
4 schema:author Nc92ab3b866b44f43b2f158dc3c824345
5 schema:citation sg:pub.10.1007/978-3-540-44838-9_36
6 sg:pub.10.1007/s00542-015-2783-1
7 schema:datePublished 2017-03-10
8 schema:datePublishedReg 2017-03-10
9 schema:description The increase in frequency spectrum for wireless communication system has led to the growing interest in thin film electroacoustic technology that scales favorably upon miniaturization. Non-ferroelectric piezoelectric thin films such as Zinc Oxide is one of the most promising material for Complementary Metal Oxide Semiconductor-Microelectromechanical system (CMOS-MEMS) integration due to its silicon compatibility and good piezoelectric properties. This paper compares ZnO and Al doped ZnO (AZO) thin films performance characteristics when applied as CMOS-based surface acoustic wave (SAW) resonators. The interdigitated electrodes were fabricated using 0.35 μm CMOS technology followed by piezoelectric thin film deposition and probe pad patterning. Pure ZnO and AZO with 2 wt% Al2O3 have been prepared by pulse laser deposition and RF magnetron sputtering respectively. Both deposited ZnO and AZO thin films exhibited preferential crystalline growth in 002 direction. EDS analysis confirmed the incorporation of aluminium in zinc oxide thin films. High frequency electrical measurement results revealed that the devices with AZO thin film have enhanced performances as compared to devices based on ZnO thin film. It is shown that the insertion loss for AZO thin film was reduced from −65.1 to −53.5 dB and the quality factor was enhanced from 11.33 to 25.81. More significantly, the electromechanical coupling coefficient and piezoelectric coefficient were enhanced from κ = 0.044–0.069% and d31 = 5.00 to 5.41 pm/V for AZO devices compared to those based on ZnO devices, respectively. One possible explanation of these enhanced piezoelectric properties comes from the almost ideal c-axis orientation of AZO thin film as compared to pure ZnO thin films. Our results suggest that the AZO thin film can be a better candidate for surface acoustic wave resonator using the CMOS-MEMS platform.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N609489a992f642148d9b45aba8b9f66c
13 N751d65576cf644679bfb45e7fd1ab0be
14 sg:journal.1136825
15 schema:keywords AZO device
16 AZO thin films
17 Al2O3
18 CMOS
19 CMOS platform
20 CMOS technology
21 EDS analysis
22 RF magnetron sputtering
23 ZnO
24 ZnO devices
25 ZnO thin films
26 acoustic wave resonators
27 al
28 aluminum
29 analysis
30 axis orientation
31 azo
32 candidates
33 characteristics
34 coefficient
35 communication systems
36 compatibility
37 coupling coefficient
38 crystalline growth
39 d31
40 dB
41 deposition
42 devices
43 direction
44 electrical measurement results
45 electroacoustic technology
46 electrode
47 electromechanical coupling coefficient
48 explanation
49 factors
50 film deposition
51 films
52 frequency spectrum
53 good candidate
54 good piezoelectric properties
55 growth
56 incorporation
57 incorporation of aluminum
58 increase
59 insertion loss
60 integration
61 interest
62 laser deposition
63 loss
64 magnetron sputtering
65 materials
66 measurement results
67 miniaturization
68 orientation
69 oxide
70 oxide thin films
71 paper
72 patterning
73 performance
74 performance characteristics
75 piezoelectric coefficient
76 piezoelectric properties
77 piezoelectric thin films
78 platform
79 pm/V
80 possible explanation
81 preferential crystalline growth
82 promising material
83 properties
84 pulsed-laser deposition
85 pure ZnO
86 pure ZnO thin films
87 quality factor
88 resonator
89 results
90 silicon compatibility
91 spectra
92 sputtering
93 surface acoustic wave resonator
94 system
95 system integration
96 technology
97 thin film deposition
98 thin films
99 wave resonators
100 wireless communication systems
101 zinc oxide
102 zinc oxide thin films
103 schema:name Enhanced piezoelectric properties of aluminium doped zinc oxide thin film for surface acoustic wave resonators on a CMOS platform
104 schema:pagination 9132-9138
105 schema:productId N1c7bb056f67f49239314bc8dc60bd10e
106 Nbb1a7964b78142df983cffd8925395d4
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027465
108 https://doi.org/10.1007/s10854-017-6647-6
109 schema:sdDatePublished 2022-12-01T06:35
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N3ac4e87a51be4465a7329b151293f031
112 schema:url https://doi.org/10.1007/s10854-017-6647-6
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N1c7bb056f67f49239314bc8dc60bd10e schema:name doi
117 schema:value 10.1007/s10854-017-6647-6
118 rdf:type schema:PropertyValue
119 N22197ba3363545d888c9ac97d7060ad2 rdf:first sg:person.015557641436.02
120 rdf:rest N89db86f0d41d4e5b94f45bd510a7640a
121 N3ac4e87a51be4465a7329b151293f031 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N4507b5a4032c4de797d7836ef1abde81 rdf:first sg:person.010200264341.20
124 rdf:rest Nf7f1e3e05125417e8d97f58f53c1b52e
125 N53f72296c35f45cfa5ed5b4c8c8223d1 rdf:first sg:person.010442700266.64
126 rdf:rest N22197ba3363545d888c9ac97d7060ad2
127 N609489a992f642148d9b45aba8b9f66c schema:volumeNumber 28
128 rdf:type schema:PublicationVolume
129 N751d65576cf644679bfb45e7fd1ab0be schema:issueNumber 12
130 rdf:type schema:PublicationIssue
131 N89db86f0d41d4e5b94f45bd510a7640a rdf:first sg:person.013747233506.85
132 rdf:rest rdf:nil
133 Nbb1a7964b78142df983cffd8925395d4 schema:name dimensions_id
134 schema:value pub.1084027465
135 rdf:type schema:PropertyValue
136 Nc92ab3b866b44f43b2f158dc3c824345 rdf:first sg:person.013136661575.27
137 rdf:rest N4507b5a4032c4de797d7836ef1abde81
138 Nf7f1e3e05125417e8d97f58f53c1b52e rdf:first sg:person.012553151573.91
139 rdf:rest N53f72296c35f45cfa5ed5b4c8c8223d1
140 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
141 schema:name Engineering
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
144 schema:name Electrical and Electronic Engineering
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
147 schema:name Materials Engineering
148 rdf:type schema:DefinedTerm
149 sg:journal.1136825 schema:issn 0957-4522
150 1573-482X
151 schema:name Journal of Materials Science: Materials in Electronics
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.010200264341.20 schema:affiliation grid-institutes:grid.9966.0
155 schema:familyName Mortada
156 schema:givenName Ossama
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010200264341.20
158 rdf:type schema:Person
159 sg:person.010442700266.64 schema:affiliation grid-institutes:grid.9966.0
160 schema:familyName Crunteanu
161 schema:givenName Aurelian
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442700266.64
163 rdf:type schema:Person
164 sg:person.012553151573.91 schema:affiliation grid-institutes:grid.9966.0
165 schema:familyName Orlianges
166 schema:givenName Jean Christophe
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553151573.91
168 rdf:type schema:Person
169 sg:person.013136661575.27 schema:affiliation grid-institutes:grid.440422.4
170 schema:familyName Ralib
171 schema:givenName Aliza Aini Md
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013136661575.27
173 rdf:type schema:Person
174 sg:person.013747233506.85 schema:affiliation grid-institutes:grid.440422.4
175 schema:familyName Nordin
176 schema:givenName Anis Nurashikin
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747233506.85
178 rdf:type schema:Person
179 sg:person.015557641436.02 schema:affiliation grid-institutes:grid.9966.0
180 schema:familyName Chatras
181 schema:givenName Matthieu
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015557641436.02
183 rdf:type schema:Person
184 sg:pub.10.1007/978-3-540-44838-9_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026334594
185 https://doi.org/10.1007/978-3-540-44838-9_36
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s00542-015-2783-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018935105
188 https://doi.org/10.1007/s00542-015-2783-1
189 rdf:type schema:CreativeWork
190 grid-institutes:grid.440422.4 schema:alternateName Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University, Malaysia, Kuala Lumpur, Malaysia
191 schema:name Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University, Malaysia, Kuala Lumpur, Malaysia
192 rdf:type schema:Organization
193 grid-institutes:grid.9966.0 schema:alternateName XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France
194 schema:name XLIM UMR 2752, University of Limoges/CNRS, 123, Avenue Albert THOMAS, 87060, Limoges Cedex, France
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...