Investigations of doping induced structural, optical and magnetic properties of Ni doped ZnS diluted magnetic semiconductors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

D. Saikia, J. P. Borah

ABSTRACT

We have synthesized diluted magnetic semiconducting nanoparticles of undoped and Ni doped ZnS, by varying Ni concentration, via chemical co-precipitation technique. The formation of cubic zinc blend structure and the incorporation of Ni into ZnS lattice are confirmed by the X-ray diffraction (XRD) measurements. Rietveld refinement of the structural parameters shows a reasonable GOF value. Transmission electron microscopy result reveals the crystalline nature of the ZnS nanocrystal with an average d-spacing of 3.1 Å and also clarifies that the average particle size of the nanoparticles is in the range of 3–7 nm, which are consistence with the XRD results. UV–visible measurement depicts that the band gap of the Ni doped ZnS nanoparticles is higher than that of bulk ZnS, which is a result of the quantum confinement effect. Room temperature photoluminescence (PL) spectra shows the green emission in Ni doped ZnS nanoparticles, which is the characteristic 3T2–3A2 transition of Ni2+ ion and also depicts the PL quenching effect at higher Ni concentration. Fourier transform infrared measurements show different stretching and vibrational modes and also show the resonance interactions of the sulphide ions. Raman analysis reveals different phonon modes of ZnS and confirms the defect states. Room temperature magnetic measurements demonstrate the ferromagnetic behavior in undoped ZnS nanoparticles due to the presence of structural defects. Systemic studies on the magnetic properties revels that all the doped ZnS nanoparticles exhibit the carrier mediated ferromagnetism and the saturation magnetization increases with increasing concentration of Ni. More... »

PAGES

8029-8037

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-017-6508-3

DOI

http://dx.doi.org/10.1007/s10854-017-6508-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083828166


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Physics, National Institute of Technology Nagaland, Chumukedima, 797103, Dimapur, Nagaland, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saikia", 
        "givenName": "D.", 
        "id": "sg:person.012317520777.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317520777.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, National Institute of Technology Nagaland, Chumukedima, 797103, Dimapur, Nagaland, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borah", 
        "givenName": "J. P.", 
        "id": "sg:person.011254254211.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254254211.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physb.2006.07.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000157999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2016.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002154801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/152/1/012039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003067711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrs.3116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003161650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2013.10.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004327030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-015-2755-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005365718", 
          "https://doi.org/10.1007/s10854-015-2755-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2013.06.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007788987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2011.09.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011159481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spmi.2015.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011411532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2003.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013475029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1an15653e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016290949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2009.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016997557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-014-2823-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017055587", 
          "https://doi.org/10.1007/s10948-014-2823-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2012.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017098816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018107050", 
          "https://doi.org/10.1186/1556-276x-9-389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2015.08.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020574614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003390100889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020710224", 
          "https://doi.org/10.1007/s003390100889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10971-013-3194-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022555404", 
          "https://doi.org/10.1007/s10971-013-3194-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optmat.2005.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024151425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024794148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlumin.2014.01.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025039092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optmat.2012.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025569072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0965-9773(95)00237-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025662209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12648-015-0780-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026202952", 
          "https://doi.org/10.1007/s12648-015-0780-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2009.03.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026472394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2011.03.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026568972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004709601889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027664176", 
          "https://doi.org/10.1023/a:1004709601889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.0181502jss", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028116121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2011.02.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029530068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.09.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036995425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optmat.2015.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037387652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-011-6563-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040776345", 
          "https://doi.org/10.1007/s00339-011-6563-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlumin.2013.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041637316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13204-012-0167-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042599983", 
          "https://doi.org/10.1007/s13204-012-0167-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spmi.2014.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044803411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mssp.2013.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046925671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-015-9356-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050183229", 
          "https://doi.org/10.1007/s10853-015-9356-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2010.01.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050369541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-8-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050601164", 
          "https://doi.org/10.1186/1556-276x-8-17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4881501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053602840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl048720h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl048720h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1633347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057728120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2423326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057855959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.182.838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060441928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.182.838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060441928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.1290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.1290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592421"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "We have synthesized diluted magnetic semiconducting nanoparticles of undoped and Ni doped ZnS, by varying Ni concentration, via chemical co-precipitation technique. The formation of cubic zinc blend structure and the incorporation of Ni into ZnS lattice are confirmed by the X-ray diffraction (XRD) measurements. Rietveld refinement of the structural parameters shows a reasonable GOF value. Transmission electron microscopy result reveals the crystalline nature of the ZnS nanocrystal with an average d-spacing of 3.1 \u00c5 and also clarifies that the average particle size of the nanoparticles is in the range of 3\u20137 nm, which are consistence with the XRD results. UV\u2013visible measurement depicts that the band gap of the Ni doped ZnS nanoparticles is higher than that of bulk ZnS, which is a result of the quantum confinement effect. Room temperature photoluminescence (PL) spectra shows the green emission in Ni doped ZnS nanoparticles, which is the characteristic 3T2\u20133A2 transition of Ni2+ ion and also depicts the PL quenching effect at higher Ni concentration. Fourier transform infrared measurements show different stretching and vibrational modes and also show the resonance interactions of the sulphide ions. Raman analysis reveals different phonon modes of ZnS and confirms the defect states. Room temperature magnetic measurements demonstrate the ferromagnetic behavior in undoped ZnS nanoparticles due to the presence of structural defects. Systemic studies on the magnetic properties revels that all the doped ZnS nanoparticles exhibit the carrier mediated ferromagnetism and the saturation magnetization increases with increasing concentration of Ni.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10854-017-6508-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Investigations of doping induced structural, optical and magnetic properties of Ni doped ZnS diluted magnetic semiconductors", 
    "pagination": "8029-8037", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b614664ddc11e1c99872efed6c7142ddc5a12ecb06768d89b1d11b22142e095f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-017-6508-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083828166"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-017-6508-3", 
      "https://app.dimensions.ai/details/publication/pub.1083828166"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54301_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10854-017-6508-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6508-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6508-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6508-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6508-3'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-017-6508-3 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ne0dfeccdf276403d8ce8914fb5934587
4 schema:citation sg:pub.10.1007/s00339-011-6563-1
5 sg:pub.10.1007/s003390100889
6 sg:pub.10.1007/s10853-015-9356-7
7 sg:pub.10.1007/s10854-015-2755-3
8 sg:pub.10.1007/s10948-014-2823-6
9 sg:pub.10.1007/s10971-013-3194-3
10 sg:pub.10.1007/s12648-015-0780-y
11 sg:pub.10.1007/s13204-012-0167-8
12 sg:pub.10.1023/a:1004709601889
13 sg:pub.10.1186/1556-276x-8-17
14 sg:pub.10.1186/1556-276x-9-389
15 https://doi.org/10.1002/jrs.3116
16 https://doi.org/10.1016/0965-9773(95)00237-9
17 https://doi.org/10.1016/j.apsusc.2011.03.114
18 https://doi.org/10.1016/j.apsusc.2015.08.163
19 https://doi.org/10.1016/j.ceramint.2013.10.056
20 https://doi.org/10.1016/j.cplett.2011.09.048
21 https://doi.org/10.1016/j.jallcom.2012.12.001
22 https://doi.org/10.1016/j.jallcom.2013.06.061
23 https://doi.org/10.1016/j.jallcom.2015.09.244
24 https://doi.org/10.1016/j.jcis.2010.01.050
25 https://doi.org/10.1016/j.jlumin.2013.06.006
26 https://doi.org/10.1016/j.jlumin.2014.01.040
27 https://doi.org/10.1016/j.jmmm.2003.11.017
28 https://doi.org/10.1016/j.jmmm.2009.03.043
29 https://doi.org/10.1016/j.jssc.2009.07.015
30 https://doi.org/10.1016/j.mssp.2013.02.010
31 https://doi.org/10.1016/j.optmat.2005.10.003
32 https://doi.org/10.1016/j.optmat.2012.05.001
33 https://doi.org/10.1016/j.optmat.2015.06.022
34 https://doi.org/10.1016/j.physb.2006.07.067
35 https://doi.org/10.1016/j.physb.2011.02.062
36 https://doi.org/10.1016/j.physe.2016.04.016
37 https://doi.org/10.1016/j.spmi.2014.05.026
38 https://doi.org/10.1016/j.spmi.2015.04.016
39 https://doi.org/10.1021/nl048720h
40 https://doi.org/10.1039/c1an15653e
41 https://doi.org/10.1063/1.1633347
42 https://doi.org/10.1063/1.2423326
43 https://doi.org/10.1063/1.4881501
44 https://doi.org/10.1088/1742-6596/152/1/012039
45 https://doi.org/10.1103/physrev.182.838
46 https://doi.org/10.1103/physrevb.6.1290
47 https://doi.org/10.1126/science.1065389
48 https://doi.org/10.1149/2.0181502jss
49 schema:datePublished 2017-06
50 schema:datePublishedReg 2017-06-01
51 schema:description We have synthesized diluted magnetic semiconducting nanoparticles of undoped and Ni doped ZnS, by varying Ni concentration, via chemical co-precipitation technique. The formation of cubic zinc blend structure and the incorporation of Ni into ZnS lattice are confirmed by the X-ray diffraction (XRD) measurements. Rietveld refinement of the structural parameters shows a reasonable GOF value. Transmission electron microscopy result reveals the crystalline nature of the ZnS nanocrystal with an average d-spacing of 3.1 Å and also clarifies that the average particle size of the nanoparticles is in the range of 3–7 nm, which are consistence with the XRD results. UV–visible measurement depicts that the band gap of the Ni doped ZnS nanoparticles is higher than that of bulk ZnS, which is a result of the quantum confinement effect. Room temperature photoluminescence (PL) spectra shows the green emission in Ni doped ZnS nanoparticles, which is the characteristic 3T2–3A2 transition of Ni2+ ion and also depicts the PL quenching effect at higher Ni concentration. Fourier transform infrared measurements show different stretching and vibrational modes and also show the resonance interactions of the sulphide ions. Raman analysis reveals different phonon modes of ZnS and confirms the defect states. Room temperature magnetic measurements demonstrate the ferromagnetic behavior in undoped ZnS nanoparticles due to the presence of structural defects. Systemic studies on the magnetic properties revels that all the doped ZnS nanoparticles exhibit the carrier mediated ferromagnetism and the saturation magnetization increases with increasing concentration of Ni.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N8df5807bb3274d2095c2aecd74e6598c
56 Nea91ce0875b44e37857641f7b2a43e51
57 sg:journal.1136825
58 schema:name Investigations of doping induced structural, optical and magnetic properties of Ni doped ZnS diluted magnetic semiconductors
59 schema:pagination 8029-8037
60 schema:productId Nd2daa3065e1b44bba9bc3532c1a4cde9
61 Nd6addcad72524682bc71c73b17f5582a
62 Nf1dc51f259144983b8412f28df3bed41
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083828166
64 https://doi.org/10.1007/s10854-017-6508-3
65 schema:sdDatePublished 2019-04-11T10:16
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N8f30f31771104e21a8bc85c7a25de80a
68 schema:url https://link.springer.com/10.1007%2Fs10854-017-6508-3
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N29b4a4d7f4b546e79479cb153fa913ab schema:name Department of Physics, National Institute of Technology Nagaland, Chumukedima, 797103, Dimapur, Nagaland, India
73 rdf:type schema:Organization
74 N5d4bf753be1e497d9fb35bd264d2d29c schema:name Department of Physics, National Institute of Technology Nagaland, Chumukedima, 797103, Dimapur, Nagaland, India
75 rdf:type schema:Organization
76 N8df5807bb3274d2095c2aecd74e6598c schema:issueNumber 11
77 rdf:type schema:PublicationIssue
78 N8f30f31771104e21a8bc85c7a25de80a schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nc718a3b02d844760affe07ab4b5fc98d rdf:first sg:person.011254254211.47
81 rdf:rest rdf:nil
82 Nd2daa3065e1b44bba9bc3532c1a4cde9 schema:name dimensions_id
83 schema:value pub.1083828166
84 rdf:type schema:PropertyValue
85 Nd6addcad72524682bc71c73b17f5582a schema:name doi
86 schema:value 10.1007/s10854-017-6508-3
87 rdf:type schema:PropertyValue
88 Ne0dfeccdf276403d8ce8914fb5934587 rdf:first sg:person.012317520777.36
89 rdf:rest Nc718a3b02d844760affe07ab4b5fc98d
90 Nea91ce0875b44e37857641f7b2a43e51 schema:volumeNumber 28
91 rdf:type schema:PublicationVolume
92 Nf1dc51f259144983b8412f28df3bed41 schema:name readcube_id
93 schema:value b614664ddc11e1c99872efed6c7142ddc5a12ecb06768d89b1d11b22142e095f
94 rdf:type schema:PropertyValue
95 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
96 schema:name Chemical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Chemistry (incl. Structural)
100 rdf:type schema:DefinedTerm
101 sg:journal.1136825 schema:issn 0957-4522
102 1573-482X
103 schema:name Journal of Materials Science: Materials in Electronics
104 rdf:type schema:Periodical
105 sg:person.011254254211.47 schema:affiliation N5d4bf753be1e497d9fb35bd264d2d29c
106 schema:familyName Borah
107 schema:givenName J. P.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254254211.47
109 rdf:type schema:Person
110 sg:person.012317520777.36 schema:affiliation N29b4a4d7f4b546e79479cb153fa913ab
111 schema:familyName Saikia
112 schema:givenName D.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317520777.36
114 rdf:type schema:Person
115 sg:pub.10.1007/s00339-011-6563-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040776345
116 https://doi.org/10.1007/s00339-011-6563-1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s003390100889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020710224
119 https://doi.org/10.1007/s003390100889
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10853-015-9356-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050183229
122 https://doi.org/10.1007/s10853-015-9356-7
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10854-015-2755-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005365718
125 https://doi.org/10.1007/s10854-015-2755-3
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10948-014-2823-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017055587
128 https://doi.org/10.1007/s10948-014-2823-6
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10971-013-3194-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022555404
131 https://doi.org/10.1007/s10971-013-3194-3
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s12648-015-0780-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026202952
134 https://doi.org/10.1007/s12648-015-0780-y
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s13204-012-0167-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042599983
137 https://doi.org/10.1007/s13204-012-0167-8
138 rdf:type schema:CreativeWork
139 sg:pub.10.1023/a:1004709601889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027664176
140 https://doi.org/10.1023/a:1004709601889
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1556-276x-8-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050601164
143 https://doi.org/10.1186/1556-276x-8-17
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/1556-276x-9-389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018107050
146 https://doi.org/10.1186/1556-276x-9-389
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/jrs.3116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003161650
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0965-9773(95)00237-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025662209
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.apsusc.2011.03.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026568972
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.apsusc.2015.08.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020574614
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ceramint.2013.10.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004327030
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cplett.2011.09.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011159481
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jallcom.2012.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017098816
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jallcom.2013.06.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007788987
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jallcom.2015.09.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036995425
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jcis.2010.01.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050369541
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jlumin.2013.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041637316
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jlumin.2014.01.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025039092
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jmmm.2003.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013475029
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jmmm.2009.03.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026472394
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.jssc.2009.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016997557
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.mssp.2013.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046925671
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.optmat.2005.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024151425
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.optmat.2012.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025569072
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.optmat.2015.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037387652
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.physb.2006.07.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000157999
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.physb.2011.02.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029530068
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.physe.2016.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002154801
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.spmi.2014.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044803411
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.spmi.2015.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011411532
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/nl048720h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215942
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1039/c1an15653e schema:sameAs https://app.dimensions.ai/details/publication/pub.1016290949
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1063/1.1633347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057728120
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.2423326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057855959
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.4881501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053602840
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/1742-6596/152/1/012039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003067711
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrev.182.838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060441928
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.6.1290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592421
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1065389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794148
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1149/2.0181502jss schema:sameAs https://app.dimensions.ai/details/publication/pub.1028116121
215 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...