Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-27

AUTHORS

Shanshan Yao, Sikang Xue, Yingji Zhang, Xiangqian Shen, Xinye Qian, Tianbao Li, Kesong Xiao, Shibiao Qin, Jun Xiang

ABSTRACT

In this paper, the electrically conductive of Magnéli phase Ti4O7 was successfully synthesized using TiO(NO3)2 as the precursor of titania in a reductive atmosphere at 1000 °C for 6 h, and characterized by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The SEM images clearly show the spherical shape and their average particle size is around 250 nm. The as-prepared Ti4O7 was used as an additive to prepare sulfur/Ti4O7 composite cathode. The cyclic voltammetry tests demonstrated the Ti4O7 can not only contribute to reduce the dissolution of polysulfides into electrolytes, but also improve the electrochemical reaction kinetics during charge–discharge processes. The effect of the Ti4O7 nanospheres heat treatment temperature on the sulfur/Ti4O7 cycling performance was also investigated. As a result, the cathode with nanospheres of Ti4O7 calcined at 1000 °C exhibited 930 mAh g−1 of initial capacity and keeping the remaining capacity of 460 mAh g−1 over 100 cycles, which could be improved due to its high specific surface area and nanosized structure. More... »

PAGES

7264-7270

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-017-6410-z

DOI

http://dx.doi.org/10.1007/s10854-017-6410-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1074244258


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Shanshan", 
        "id": "sg:person.010544252457.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544252457.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Sikang", 
        "id": "sg:person.010146650277.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146650277.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yingji", 
        "id": "sg:person.014077253622.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077253622.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.495316.c", 
          "name": [
            "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
            "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Xiangqian", 
        "id": "sg:person.0601655670.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Xinye", 
        "id": "sg:person.013417377251.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417377251.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.495316.c", 
          "name": [
            "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Tianbao", 
        "id": "sg:person.012113453147.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113453147.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.495316.c", 
          "name": [
            "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Kesong", 
        "id": "sg:person.011545057154.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545057154.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.495316.c", 
          "name": [
            "Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Shibiao", 
        "id": "sg:person.07707561355.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07707561355.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Physics, Jiangsu University of Science and Technology, 212013, Zhenjiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.510447.3", 
          "name": [
            "School of Mathematics and Physics, Jiangsu University of Science and Technology, 212013, Zhenjiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "Jun", 
        "id": "sg:person.010111643343.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010111643343.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep08763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020414078", 
          "https://doi.org/10.1038/srep08763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1003469427858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029300798", 
          "https://doi.org/10.1023/a:1003469427858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020907974", 
          "https://doi.org/10.1038/ncomms5759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-69002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036531764", 
          "https://doi.org/10.1007/978-0-387-69002-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-27", 
    "datePublishedReg": "2017-01-27", 
    "description": "In this paper, the electrically conductive of Magn\u00e9li phase Ti4O7 was successfully synthesized using TiO(NO3)2 as the precursor of titania in a reductive atmosphere at 1000\u2009\u00b0C for 6\u00a0h, and characterized by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The SEM images clearly show the spherical shape and their average particle size is around 250\u00a0nm. The as-prepared Ti4O7 was used as an additive to prepare sulfur/Ti4O7 composite cathode. The cyclic voltammetry tests demonstrated the Ti4O7 can not only contribute to reduce the dissolution of polysulfides into electrolytes, but also improve the electrochemical reaction kinetics during charge\u2013discharge processes. The effect of the Ti4O7 nanospheres heat treatment temperature on the sulfur/Ti4O7 cycling performance was also investigated. As a result, the cathode with nanospheres of Ti4O7 calcined at 1000\u2009\u00b0C exhibited 930\u00a0mAh\u00a0g\u22121 of initial capacity and keeping the remaining capacity of 460\u00a0mAh\u00a0g\u22121 over 100 cycles, which could be improved due to its high specific surface area and nanosized structure.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10854-017-6410-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8262402", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8259723", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7174762", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "Magn\u00e9li phase Ti4O7", 
      "charge-discharge process", 
      "high specific surface area", 
      "dissolution of polysulfides", 
      "electrochemical reaction kinetics", 
      "cyclic voltammetry tests", 
      "ray photoelectron spectroscopy", 
      "specific surface area", 
      "precursor of titania", 
      "average particle size", 
      "electrochemical performance", 
      "composite cathode", 
      "voltammetry tests", 
      "initial capacity", 
      "photoelectron spectroscopy", 
      "cycling performance", 
      "spherical nanostructures", 
      "Raman spectroscopy", 
      "ray diffraction", 
      "reductive atmosphere", 
      "surface area", 
      "spherical shape", 
      "reaction kinetics", 
      "SEM images", 
      "Ti4O7", 
      "particle size", 
      "electron microscopy", 
      "nanospheres", 
      "spectroscopy", 
      "cathode", 
      "treatment temperature", 
      "titania", 
      "polysulfides", 
      "electrolyte", 
      "nanostructures", 
      "diffraction", 
      "additives", 
      "synthesis", 
      "dissolution", 
      "precursors", 
      "microscopy", 
      "kinetics", 
      "characterization", 
      "atmosphere", 
      "capacity", 
      "temperature", 
      "structure", 
      "performance", 
      "size", 
      "process", 
      "shape", 
      "cycle", 
      "effect", 
      "results", 
      "area", 
      "test", 
      "images", 
      "paper", 
      "phase Ti4O7", 
      "sulfur/Ti4O7 composite cathode", 
      "Ti4O7 composite cathode", 
      "Ti4O7 nanospheres", 
      "sulfur/Ti4O7 cycling performance", 
      "Ti4O7 cycling performance", 
      "nanospheres of Ti4O7"
    ], 
    "name": "Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magn\u00e9li phase Ti4O7", 
    "pagination": "7264-7270", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1074244258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-017-6410-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-017-6410-z", 
      "https://app.dimensions.ai/details/publication/pub.1074244258"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_723.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10854-017-6410-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6410-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6410-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6410-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-017-6410-z'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      22 PREDICATES      95 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-017-6410-z schema:about anzsrc-for:09
2 anzsrc-for:0906
3 anzsrc-for:0912
4 schema:author N50ae618571324ca2a4022e77c97af8c4
5 schema:citation sg:pub.10.1007/978-0-387-69002-5
6 sg:pub.10.1023/a:1003469427858
7 sg:pub.10.1038/ncomms5759
8 sg:pub.10.1038/srep08763
9 schema:datePublished 2017-01-27
10 schema:datePublishedReg 2017-01-27
11 schema:description In this paper, the electrically conductive of Magnéli phase Ti4O7 was successfully synthesized using TiO(NO3)2 as the precursor of titania in a reductive atmosphere at 1000 °C for 6 h, and characterized by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The SEM images clearly show the spherical shape and their average particle size is around 250 nm. The as-prepared Ti4O7 was used as an additive to prepare sulfur/Ti4O7 composite cathode. The cyclic voltammetry tests demonstrated the Ti4O7 can not only contribute to reduce the dissolution of polysulfides into electrolytes, but also improve the electrochemical reaction kinetics during charge–discharge processes. The effect of the Ti4O7 nanospheres heat treatment temperature on the sulfur/Ti4O7 cycling performance was also investigated. As a result, the cathode with nanospheres of Ti4O7 calcined at 1000 °C exhibited 930 mAh g−1 of initial capacity and keeping the remaining capacity of 460 mAh g−1 over 100 cycles, which could be improved due to its high specific surface area and nanosized structure.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N4d14d8c712d043dfae3f2763079d2dfc
16 Nbb81a9eaf72845daa5e880692d34c7cd
17 sg:journal.1136825
18 schema:keywords Magnéli phase Ti4O7
19 Raman spectroscopy
20 SEM images
21 Ti4O7
22 Ti4O7 composite cathode
23 Ti4O7 cycling performance
24 Ti4O7 nanospheres
25 additives
26 area
27 atmosphere
28 average particle size
29 capacity
30 cathode
31 characterization
32 charge-discharge process
33 composite cathode
34 cycle
35 cyclic voltammetry tests
36 cycling performance
37 diffraction
38 dissolution
39 dissolution of polysulfides
40 effect
41 electrochemical performance
42 electrochemical reaction kinetics
43 electrolyte
44 electron microscopy
45 high specific surface area
46 images
47 initial capacity
48 kinetics
49 microscopy
50 nanospheres
51 nanospheres of Ti4O7
52 nanostructures
53 paper
54 particle size
55 performance
56 phase Ti4O7
57 photoelectron spectroscopy
58 polysulfides
59 precursor of titania
60 precursors
61 process
62 ray diffraction
63 ray photoelectron spectroscopy
64 reaction kinetics
65 reductive atmosphere
66 results
67 shape
68 size
69 specific surface area
70 spectroscopy
71 spherical nanostructures
72 spherical shape
73 structure
74 sulfur/Ti4O7 composite cathode
75 sulfur/Ti4O7 cycling performance
76 surface area
77 synthesis
78 temperature
79 test
80 titania
81 treatment temperature
82 voltammetry tests
83 schema:name Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7
84 schema:pagination 7264-7270
85 schema:productId N1748ff4a294f4562957ca2eb302b6fb2
86 Nef81746224c34eea8447913238f1f7ce
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074244258
88 https://doi.org/10.1007/s10854-017-6410-z
89 schema:sdDatePublished 2022-01-01T18:42
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N9ceb4411a2be47f99f57c4a24833a399
92 schema:url https://doi.org/10.1007/s10854-017-6410-z
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N1748ff4a294f4562957ca2eb302b6fb2 schema:name doi
97 schema:value 10.1007/s10854-017-6410-z
98 rdf:type schema:PropertyValue
99 N36365e0dfade411990b20896a51d68d2 rdf:first sg:person.0601655670.06
100 rdf:rest Nf7cea44e2448458ca68935ce25ce2d6f
101 N39b697178d914933981bb81134e1d935 rdf:first sg:person.010146650277.03
102 rdf:rest Na9324cccf712480092898ecd8e9eaa8f
103 N4d14d8c712d043dfae3f2763079d2dfc schema:issueNumber 10
104 rdf:type schema:PublicationIssue
105 N50ae618571324ca2a4022e77c97af8c4 rdf:first sg:person.010544252457.22
106 rdf:rest N39b697178d914933981bb81134e1d935
107 N70ec95f950714591886f22ea0d96c3cd rdf:first sg:person.012113453147.61
108 rdf:rest Ned296688f77a494cb6de909b08a7d98d
109 N9b8ff0d4be264f668eec487c1a3dc733 rdf:first sg:person.07707561355.84
110 rdf:rest Nc11e698aca084574a04206d72d9d4e1b
111 N9ceb4411a2be47f99f57c4a24833a399 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Na9324cccf712480092898ecd8e9eaa8f rdf:first sg:person.014077253622.66
114 rdf:rest N36365e0dfade411990b20896a51d68d2
115 Nbb81a9eaf72845daa5e880692d34c7cd schema:volumeNumber 28
116 rdf:type schema:PublicationVolume
117 Nc11e698aca084574a04206d72d9d4e1b rdf:first sg:person.010111643343.72
118 rdf:rest rdf:nil
119 Ned296688f77a494cb6de909b08a7d98d rdf:first sg:person.011545057154.44
120 rdf:rest N9b8ff0d4be264f668eec487c1a3dc733
121 Nef81746224c34eea8447913238f1f7ce schema:name dimensions_id
122 schema:value pub.1074244258
123 rdf:type schema:PropertyValue
124 Nf7cea44e2448458ca68935ce25ce2d6f rdf:first sg:person.013417377251.44
125 rdf:rest N70ec95f950714591886f22ea0d96c3cd
126 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
127 schema:name Engineering
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
130 schema:name Electrical and Electronic Engineering
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
133 schema:name Materials Engineering
134 rdf:type schema:DefinedTerm
135 sg:grant.7174762 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-017-6410-z
136 rdf:type schema:MonetaryGrant
137 sg:grant.8259723 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-017-6410-z
138 rdf:type schema:MonetaryGrant
139 sg:grant.8262402 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-017-6410-z
140 rdf:type schema:MonetaryGrant
141 sg:journal.1136825 schema:issn 0957-4522
142 1573-482X
143 schema:name Journal of Materials Science: Materials in Electronics
144 schema:publisher Springer Nature
145 rdf:type schema:Periodical
146 sg:person.010111643343.72 schema:affiliation grid-institutes:grid.510447.3
147 schema:familyName Xiang
148 schema:givenName Jun
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010111643343.72
150 rdf:type schema:Person
151 sg:person.010146650277.03 schema:affiliation grid-institutes:grid.440785.a
152 schema:familyName Xue
153 schema:givenName Sikang
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146650277.03
155 rdf:type schema:Person
156 sg:person.010544252457.22 schema:affiliation grid-institutes:grid.440785.a
157 schema:familyName Yao
158 schema:givenName Shanshan
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544252457.22
160 rdf:type schema:Person
161 sg:person.011545057154.44 schema:affiliation grid-institutes:grid.495316.c
162 schema:familyName Xiao
163 schema:givenName Kesong
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545057154.44
165 rdf:type schema:Person
166 sg:person.012113453147.61 schema:affiliation grid-institutes:grid.495316.c
167 schema:familyName Li
168 schema:givenName Tianbao
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113453147.61
170 rdf:type schema:Person
171 sg:person.013417377251.44 schema:affiliation grid-institutes:grid.440785.a
172 schema:familyName Qian
173 schema:givenName Xinye
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417377251.44
175 rdf:type schema:Person
176 sg:person.014077253622.66 schema:affiliation grid-institutes:grid.440785.a
177 schema:familyName Zhang
178 schema:givenName Yingji
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077253622.66
180 rdf:type schema:Person
181 sg:person.0601655670.06 schema:affiliation grid-institutes:grid.495316.c
182 schema:familyName Shen
183 schema:givenName Xiangqian
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06
185 rdf:type schema:Person
186 sg:person.07707561355.84 schema:affiliation grid-institutes:grid.495316.c
187 schema:familyName Qin
188 schema:givenName Shibiao
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07707561355.84
190 rdf:type schema:Person
191 sg:pub.10.1007/978-0-387-69002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036531764
192 https://doi.org/10.1007/978-0-387-69002-5
193 rdf:type schema:CreativeWork
194 sg:pub.10.1023/a:1003469427858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029300798
195 https://doi.org/10.1023/a:1003469427858
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/ncomms5759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020907974
198 https://doi.org/10.1038/ncomms5759
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/srep08763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020414078
201 https://doi.org/10.1038/srep08763
202 rdf:type schema:CreativeWork
203 grid-institutes:grid.440785.a schema:alternateName Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People’s Republic of China
204 schema:name Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People’s Republic of China
205 rdf:type schema:Organization
206 grid-institutes:grid.495316.c schema:alternateName Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People’s Republic of China
207 schema:name Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, 410012, Changsha, People’s Republic of China
208 Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, 212313, Zhenjiang, People’s Republic of China
209 rdf:type schema:Organization
210 grid-institutes:grid.510447.3 schema:alternateName School of Mathematics and Physics, Jiangsu University of Science and Technology, 212013, Zhenjiang, People’s Republic of China
211 schema:name School of Mathematics and Physics, Jiangsu University of Science and Technology, 212013, Zhenjiang, People’s Republic of China
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...