Effects of structural differences of graphene and the preparation strategies on the photocatalytic activity of graphene–TiO2 composite film View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Yong Liu, Dong Zhang

ABSTRACT

Graphene–TiO2 composite photocatalysts, which are very promising in many fields such as optoelectronics, electrode materials and lithium-ion batteries, have attracted much attention in recent years. However, a proper design of graphene–TiO2 photocatalysts requires a systematic study of graphene functions for photocatalytic activity enhancement. It is evident that the enhancement may depend on the structural of graphene, the graphene–TiO2 interface, the nanoscale morphologies, surface area and more. These factors are highly dependent on the preparation method. Herein, in this article, we show two synthetic strategies with three routes to prepare the graphene–TiO2 composite films with spray coating method. The effects of structural differences of graphene and the preparation strategies on the microstructure and the photocatalytic performance of the graphene–TiO2 composite films under the same condition were systematically investigated. The results showed that both of the structure characteristics of graphene including the electron transport ability and specific surface area, and the interfacial contact between graphene nanosheets and TiO2 nanoparticles have important effects on the photocatalytic properties of materials. It is hoped that these experimental results can be applied as a background source to understand the underlying mechanism of the photocatalytic activity enhancement and construct more efficient graphene–TiO2 photocatalysts. More... »

PAGES

4965-4973

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-016-6150-5

DOI

http://dx.doi.org/10.1007/s10854-016-6150-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006779172


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ministry of Education of the People's Republic of China", 
          "id": "https://www.grid.ac/institutes/grid.419897.a", 
          "name": [
            "Key laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800, CaoAn Road, 201804, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ministry of Education of the People's Republic of China", 
          "id": "https://www.grid.ac/institutes/grid.419897.a", 
          "name": [
            "Key laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800, CaoAn Road, 201804, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Dong", 
        "id": "sg:person.013472162237.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472162237.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c1ra00382h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003088113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-015-2725-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081469", 
          "https://doi.org/10.1007/s10854-015-2725-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ra21364a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009632359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catcom.2006.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009692971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2012.08.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011249508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn901221k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012050322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200904144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013620089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200600426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018259684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1156965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019630779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra06360k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020459963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2nr31231j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020760724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-010-5116-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022688485", 
          "https://doi.org/10.1007/s10853-010-5116-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cp41318c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031452645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cp53325e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032022011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201303489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035232343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2013.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035501643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr1001645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039742150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr1001645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039742150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201002009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040084792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0nj00623h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043538556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2015.04.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046585489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfrep.2008.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046803161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2006.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051748027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matpr.2015.07.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052166246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.07.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053127478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am302557z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055142984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793292016500077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063021396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.302.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071927229"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "Graphene\u2013TiO2 composite photocatalysts, which are very promising in many fields such as optoelectronics, electrode materials and lithium-ion batteries, have attracted much attention in recent years. However, a proper design of graphene\u2013TiO2 photocatalysts requires a systematic study of graphene functions for photocatalytic activity enhancement. It is evident that the enhancement may depend on the structural of graphene, the graphene\u2013TiO2 interface, the nanoscale morphologies, surface area and more. These factors are highly dependent on the preparation method. Herein, in this article, we show two synthetic strategies with three routes to prepare the graphene\u2013TiO2 composite films with spray coating method. The effects of structural differences of graphene and the preparation strategies on the microstructure and the photocatalytic performance of the graphene\u2013TiO2 composite films under the same condition were systematically investigated. The results showed that both of the structure characteristics of graphene including the electron transport ability and specific surface area, and the interfacial contact between graphene nanosheets and TiO2 nanoparticles have important effects on the photocatalytic properties of materials. It is hoped that these experimental results can be applied as a background source to understand the underlying mechanism of the photocatalytic activity enhancement and construct more efficient graphene\u2013TiO2 photocatalysts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10854-016-6150-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Effects of structural differences of graphene and the preparation strategies on the photocatalytic activity of graphene\u2013TiO2 composite film", 
    "pagination": "4965-4973", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "204a9ae61ef92e24a46a8b6b1e47d68fa710d56b23a8c1cbf144354c32057c4a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-016-6150-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006779172"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-016-6150-5", 
      "https://app.dimensions.ai/details/publication/pub.1006779172"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99806_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10854-016-6150-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-6150-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-6150-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-6150-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-6150-5'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-016-6150-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N87a0bb6e014549e5a306e081826078af
4 schema:citation sg:pub.10.1007/s10853-010-5116-x
5 sg:pub.10.1007/s10854-015-2725-9
6 sg:pub.10.1038/238037a0
7 sg:pub.10.1038/nmat1849
8 https://doi.org/10.1002/adma.200904144
9 https://doi.org/10.1002/smll.200600426
10 https://doi.org/10.1002/smll.201002009
11 https://doi.org/10.1002/smll.201303489
12 https://doi.org/10.1016/j.apcatb.2006.05.011
13 https://doi.org/10.1016/j.carbon.2011.07.051
14 https://doi.org/10.1016/j.carbon.2012.08.048
15 https://doi.org/10.1016/j.catcom.2006.08.022
16 https://doi.org/10.1016/j.cej.2013.01.031
17 https://doi.org/10.1016/j.jpowsour.2015.04.086
18 https://doi.org/10.1016/j.matpr.2015.07.204
19 https://doi.org/10.1016/j.surfrep.2008.10.001
20 https://doi.org/10.1021/am302557z
21 https://doi.org/10.1021/cr1001645
22 https://doi.org/10.1021/nn901221k
23 https://doi.org/10.1039/c0nj00623h
24 https://doi.org/10.1039/c1ra00382h
25 https://doi.org/10.1039/c2cp41318c
26 https://doi.org/10.1039/c2nr31231j
27 https://doi.org/10.1039/c3cp53325e
28 https://doi.org/10.1039/c4ra06360k
29 https://doi.org/10.1039/c5ra21364a
30 https://doi.org/10.1126/science.1102896
31 https://doi.org/10.1126/science.1156965
32 https://doi.org/10.1142/s1793292016500077
33 https://doi.org/10.4028/www.scientific.net/amm.302.176
34 schema:datePublished 2017-03
35 schema:datePublishedReg 2017-03-01
36 schema:description Graphene–TiO2 composite photocatalysts, which are very promising in many fields such as optoelectronics, electrode materials and lithium-ion batteries, have attracted much attention in recent years. However, a proper design of graphene–TiO2 photocatalysts requires a systematic study of graphene functions for photocatalytic activity enhancement. It is evident that the enhancement may depend on the structural of graphene, the graphene–TiO2 interface, the nanoscale morphologies, surface area and more. These factors are highly dependent on the preparation method. Herein, in this article, we show two synthetic strategies with three routes to prepare the graphene–TiO2 composite films with spray coating method. The effects of structural differences of graphene and the preparation strategies on the microstructure and the photocatalytic performance of the graphene–TiO2 composite films under the same condition were systematically investigated. The results showed that both of the structure characteristics of graphene including the electron transport ability and specific surface area, and the interfacial contact between graphene nanosheets and TiO2 nanoparticles have important effects on the photocatalytic properties of materials. It is hoped that these experimental results can be applied as a background source to understand the underlying mechanism of the photocatalytic activity enhancement and construct more efficient graphene–TiO2 photocatalysts.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N073afe7aa5a24ddfa9e2840822de3ebd
41 N64184206977f4b92bdc94a96a6559061
42 sg:journal.1136825
43 schema:name Effects of structural differences of graphene and the preparation strategies on the photocatalytic activity of graphene–TiO2 composite film
44 schema:pagination 4965-4973
45 schema:productId N0541b77a9ca24f0a9434e7fca70cddb8
46 N70935e63dd8f4393b311d451c7946cc3
47 Nce16d0489b444b6b92f00fbcc615e7e2
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006779172
49 https://doi.org/10.1007/s10854-016-6150-5
50 schema:sdDatePublished 2019-04-11T09:31
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N6dd32b3ffadb43c8a335e66b50125e2f
53 schema:url https://link.springer.com/10.1007%2Fs10854-016-6150-5
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N03040ce806644599a773192a4b51208b schema:affiliation https://www.grid.ac/institutes/grid.419897.a
58 schema:familyName Liu
59 schema:givenName Yong
60 rdf:type schema:Person
61 N0541b77a9ca24f0a9434e7fca70cddb8 schema:name dimensions_id
62 schema:value pub.1006779172
63 rdf:type schema:PropertyValue
64 N073afe7aa5a24ddfa9e2840822de3ebd schema:volumeNumber 28
65 rdf:type schema:PublicationVolume
66 N64184206977f4b92bdc94a96a6559061 schema:issueNumber 6
67 rdf:type schema:PublicationIssue
68 N6dd32b3ffadb43c8a335e66b50125e2f schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N70935e63dd8f4393b311d451c7946cc3 schema:name readcube_id
71 schema:value 204a9ae61ef92e24a46a8b6b1e47d68fa710d56b23a8c1cbf144354c32057c4a
72 rdf:type schema:PropertyValue
73 N87a0bb6e014549e5a306e081826078af rdf:first N03040ce806644599a773192a4b51208b
74 rdf:rest Ne6999327f4364fd98330506b49f764d9
75 Nce16d0489b444b6b92f00fbcc615e7e2 schema:name doi
76 schema:value 10.1007/s10854-016-6150-5
77 rdf:type schema:PropertyValue
78 Ne6999327f4364fd98330506b49f764d9 rdf:first sg:person.013472162237.41
79 rdf:rest rdf:nil
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1136825 schema:issn 0957-4522
87 1573-482X
88 schema:name Journal of Materials Science: Materials in Electronics
89 rdf:type schema:Periodical
90 sg:person.013472162237.41 schema:affiliation https://www.grid.ac/institutes/grid.419897.a
91 schema:familyName Zhang
92 schema:givenName Dong
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472162237.41
94 rdf:type schema:Person
95 sg:pub.10.1007/s10853-010-5116-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022688485
96 https://doi.org/10.1007/s10853-010-5116-x
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10854-015-2725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081469
99 https://doi.org/10.1007/s10854-015-2725-9
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
102 https://doi.org/10.1038/238037a0
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
105 https://doi.org/10.1038/nmat1849
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/adma.200904144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013620089
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/smll.200600426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018259684
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/smll.201002009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040084792
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/smll.201303489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035232343
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.apcatb.2006.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051748027
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.carbon.2011.07.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053127478
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.carbon.2012.08.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011249508
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.catcom.2006.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009692971
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.cej.2013.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035501643
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jpowsour.2015.04.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046585489
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.matpr.2015.07.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052166246
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.surfrep.2008.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046803161
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/am302557z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055142984
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/cr1001645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039742150
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/nn901221k schema:sameAs https://app.dimensions.ai/details/publication/pub.1012050322
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1039/c0nj00623h schema:sameAs https://app.dimensions.ai/details/publication/pub.1043538556
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1039/c1ra00382h schema:sameAs https://app.dimensions.ai/details/publication/pub.1003088113
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1039/c2cp41318c schema:sameAs https://app.dimensions.ai/details/publication/pub.1031452645
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1039/c2nr31231j schema:sameAs https://app.dimensions.ai/details/publication/pub.1020760724
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1039/c3cp53325e schema:sameAs https://app.dimensions.ai/details/publication/pub.1032022011
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1039/c4ra06360k schema:sameAs https://app.dimensions.ai/details/publication/pub.1020459963
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1039/c5ra21364a schema:sameAs https://app.dimensions.ai/details/publication/pub.1009632359
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.1156965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019630779
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1142/s1793292016500077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063021396
156 rdf:type schema:CreativeWork
157 https://doi.org/10.4028/www.scientific.net/amm.302.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071927229
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.419897.a schema:alternateName Ministry of Education of the People's Republic of China
160 schema:name Key laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800, CaoAn Road, 201804, Shanghai, People’s Republic of China
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...