Highly improved performances of DSSC prepared with crystalline type CoS2 dispersed on graphene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09-03

AUTHORS

Lei Zhu, Kwang-Youn Cho, Won-Chun Oh

ABSTRACT

In the current study, reduced graphene oxide (rGO) and crystalline CoS2 were combined to create nanoscale counter electrodes via a simple hydrothermal method. When the resulting CoS2/rGO was evaluated for use as a counter electrode in dye-sensitized solar cells, it exhibited excellent electrochemical activity toward the reduction of I3−, which was a consequence of the increased number of active catalytic sites in CoS2/rGO and the high conductivity of graphene. The CoS2/rGO synthesis process is simple and scalable, and can easily be adapted for large-scale electrocatalytic film fabrication for several other electrochemical energy harvesting and storage applications. More... »

PAGES

1393-1401

References to SciGraph publications

  • 2015-02-05. Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2012-02-29. The renaissance of dye-sensitized solar cells in NATURE PHOTONICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10854-016-5673-0

    DOI

    http://dx.doi.org/10.1007/s10854-016-5673-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044262308


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Advanced Materials Science and Engineering, Hanseo University, 356-706, Seosan-si, Chungnam-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.411977.d", 
              "name": [
                "Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, 224051, Yancheng, People\u2019s Republic of China", 
                "Department of Advanced Materials Science and Engineering, Hanseo University, 356-706, Seosan-si, Chungnam-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Lei", 
            "id": "sg:person.010201060067.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201060067.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongsangnam-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongsangnam-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cho", 
            "givenName": "Kwang-Youn", 
            "id": "sg:person.01100526652.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100526652.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Advanced Materials Science and Engineering, Hanseo University, 356-706, Seosan-si, Chungnam-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.411977.d", 
              "name": [
                "Department of Advanced Materials Science and Engineering, Hanseo University, 356-706, Seosan-si, Chungnam-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oh", 
            "givenName": "Won-Chun", 
            "id": "sg:person.015032760145.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphoton.2012.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015815850", 
              "https://doi.org/10.1038/nphoton.2012.22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-015-2725-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008081469", 
              "https://doi.org/10.1007/s10854-015-2725-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-09-03", 
        "datePublishedReg": "2016-09-03", 
        "description": "In the current study, reduced graphene oxide (rGO) and crystalline CoS2 were combined to create nanoscale counter electrodes via a simple hydrothermal method. When the resulting CoS2/rGO was evaluated for use as a counter electrode in dye-sensitized solar cells, it exhibited excellent electrochemical activity toward the reduction of I3\u2212, which was a consequence of the increased number of active catalytic sites in CoS2/rGO and the high conductivity of graphene. The CoS2/rGO synthesis process is simple and scalable, and can easily be adapted for large-scale electrocatalytic film fabrication for several other electrochemical energy harvesting and storage applications.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10854-016-5673-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136825", 
            "issn": [
              "0957-4522", 
              "1573-482X"
            ], 
            "name": "Journal of Materials Science: Materials in Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "keywords": [
          "counter electrode", 
          "dye-sensitized solar cells", 
          "excellent electrochemical activity", 
          "active catalytic sites", 
          "simple hydrothermal method", 
          "electrochemical activity", 
          "hydrothermal method", 
          "storage applications", 
          "graphene oxide", 
          "synthesis process", 
          "solar cells", 
          "high conductivity", 
          "film fabrication", 
          "rGO", 
          "catalytic site", 
          "electrode", 
          "CoS2", 
          "graphene", 
          "DSSC", 
          "oxide", 
          "energy harvesting", 
          "improved performance", 
          "fabrication", 
          "conductivity", 
          "applications", 
          "harvesting", 
          "process", 
          "method", 
          "sites", 
          "reduction", 
          "activity", 
          "performance", 
          "use", 
          "study", 
          "cells", 
          "current study", 
          "number", 
          "consequences", 
          "increased number", 
          "crystalline CoS2", 
          "nanoscale counter electrodes", 
          "CoS2/rGO", 
          "CoS2/rGO synthesis process", 
          "rGO synthesis process", 
          "large-scale electrocatalytic film fabrication", 
          "electrocatalytic film fabrication", 
          "electrochemical energy harvesting", 
          "crystalline type CoS2", 
          "type CoS2"
        ], 
        "name": "Highly improved performances of DSSC prepared with crystalline type CoS2 dispersed on graphene", 
        "pagination": "1393-1401", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044262308"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10854-016-5673-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10854-016-5673-0", 
          "https://app.dimensions.ai/details/publication/pub.1044262308"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_700.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10854-016-5673-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-5673-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-5673-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-5673-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-5673-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      22 PREDICATES      76 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10854-016-5673-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N1738ac4d8fee4c75a738aab3d32dd223
    4 schema:citation sg:pub.10.1007/s10854-015-2725-9
    5 sg:pub.10.1038/nphoton.2012.22
    6 schema:datePublished 2016-09-03
    7 schema:datePublishedReg 2016-09-03
    8 schema:description In the current study, reduced graphene oxide (rGO) and crystalline CoS2 were combined to create nanoscale counter electrodes via a simple hydrothermal method. When the resulting CoS2/rGO was evaluated for use as a counter electrode in dye-sensitized solar cells, it exhibited excellent electrochemical activity toward the reduction of I3−, which was a consequence of the increased number of active catalytic sites in CoS2/rGO and the high conductivity of graphene. The CoS2/rGO synthesis process is simple and scalable, and can easily be adapted for large-scale electrocatalytic film fabrication for several other electrochemical energy harvesting and storage applications.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf Nb0b331013e554dbd9bcaca81dd0b8224
    13 Nbe6e44343f554f65869992ae24d4d35c
    14 sg:journal.1136825
    15 schema:keywords CoS2
    16 CoS2/rGO
    17 CoS2/rGO synthesis process
    18 DSSC
    19 active catalytic sites
    20 activity
    21 applications
    22 catalytic site
    23 cells
    24 conductivity
    25 consequences
    26 counter electrode
    27 crystalline CoS2
    28 crystalline type CoS2
    29 current study
    30 dye-sensitized solar cells
    31 electrocatalytic film fabrication
    32 electrochemical activity
    33 electrochemical energy harvesting
    34 electrode
    35 energy harvesting
    36 excellent electrochemical activity
    37 fabrication
    38 film fabrication
    39 graphene
    40 graphene oxide
    41 harvesting
    42 high conductivity
    43 hydrothermal method
    44 improved performance
    45 increased number
    46 large-scale electrocatalytic film fabrication
    47 method
    48 nanoscale counter electrodes
    49 number
    50 oxide
    51 performance
    52 process
    53 rGO
    54 rGO synthesis process
    55 reduction
    56 simple hydrothermal method
    57 sites
    58 solar cells
    59 storage applications
    60 study
    61 synthesis process
    62 type CoS2
    63 use
    64 schema:name Highly improved performances of DSSC prepared with crystalline type CoS2 dispersed on graphene
    65 schema:pagination 1393-1401
    66 schema:productId Na5e842c54c2244d9b03891719ef492f1
    67 Nc9b95c61e0394a6a93bad33f6fd40880
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044262308
    69 https://doi.org/10.1007/s10854-016-5673-0
    70 schema:sdDatePublished 2022-01-01T18:40
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N490987b930794d2d9fa679912e350069
    73 schema:url https://doi.org/10.1007/s10854-016-5673-0
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N1738ac4d8fee4c75a738aab3d32dd223 rdf:first sg:person.010201060067.37
    78 rdf:rest Nb4036d6773854787be83f7cf90f54471
    79 N490987b930794d2d9fa679912e350069 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Na5e842c54c2244d9b03891719ef492f1 schema:name doi
    82 schema:value 10.1007/s10854-016-5673-0
    83 rdf:type schema:PropertyValue
    84 Na6be3621ec174a6ea54a29e7791e716b rdf:first sg:person.015032760145.10
    85 rdf:rest rdf:nil
    86 Nb0b331013e554dbd9bcaca81dd0b8224 schema:volumeNumber 28
    87 rdf:type schema:PublicationVolume
    88 Nb4036d6773854787be83f7cf90f54471 rdf:first sg:person.01100526652.79
    89 rdf:rest Na6be3621ec174a6ea54a29e7791e716b
    90 Nbe6e44343f554f65869992ae24d4d35c schema:issueNumber 2
    91 rdf:type schema:PublicationIssue
    92 Nc9b95c61e0394a6a93bad33f6fd40880 schema:name dimensions_id
    93 schema:value pub.1044262308
    94 rdf:type schema:PropertyValue
    95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Engineering
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Materials Engineering
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1136825 schema:issn 0957-4522
    102 1573-482X
    103 schema:name Journal of Materials Science: Materials in Electronics
    104 schema:publisher Springer Nature
    105 rdf:type schema:Periodical
    106 sg:person.010201060067.37 schema:affiliation grid-institutes:grid.411977.d
    107 schema:familyName Zhu
    108 schema:givenName Lei
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201060067.37
    110 rdf:type schema:Person
    111 sg:person.01100526652.79 schema:affiliation grid-institutes:None
    112 schema:familyName Cho
    113 schema:givenName Kwang-Youn
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100526652.79
    115 rdf:type schema:Person
    116 sg:person.015032760145.10 schema:affiliation grid-institutes:grid.411977.d
    117 schema:familyName Oh
    118 schema:givenName Won-Chun
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10
    120 rdf:type schema:Person
    121 sg:pub.10.1007/s10854-015-2725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081469
    122 https://doi.org/10.1007/s10854-015-2725-9
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/nphoton.2012.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015815850
    125 https://doi.org/10.1038/nphoton.2012.22
    126 rdf:type schema:CreativeWork
    127 grid-institutes:None schema:alternateName Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongsangnam-do, Republic of Korea
    128 schema:name Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongsangnam-do, Republic of Korea
    129 rdf:type schema:Organization
    130 grid-institutes:grid.411977.d schema:alternateName Department of Advanced Materials Science and Engineering, Hanseo University, 356-706, Seosan-si, Chungnam-do, Republic of Korea
    131 schema:name Department of Advanced Materials Science and Engineering, Hanseo University, 356-706, Seosan-si, Chungnam-do, Republic of Korea
    132 Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, 224051, Yancheng, People’s Republic of China
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...