Fabrication and gas-sensing performance of nanorod-assembled SnO2 nanostructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Xiang Yu, Wen Zeng

ABSTRACT

The manner how nano building blocks assemble into hierarchical architectures exerts a tremendous influence on gas-sensing property of the metal oxides. Herein, we focus on tuning the 1D SnO2 rectangular nanorods into 3D hierarchical nanoflowers by manipulating the concentration of surfactant (citric acid) as well as the period of hydrothermal process, and then investigate their gas-sensing performance. Nanostructures assembled by short, unordered and well-ordered rectangular nanorods were successfully fabricated, corresponding to infant, abnormal and blooming SnO2 nanoflowers, respectively. In comparison, sensor based on blooming SnO2 nanoflowers exhibited significantly enhanced gas response to ethanol than the other two, not only in terms of the sensitivity but also the response/recovery time, which may be mainly attributed to the sufficient diffusion channel and exposed surface provided by finely dispersed nanorods in the blooming nanoflowers. More... »

PAGES

7448-7453

References to SciGraph publications

  • 2015-02. Template-free synthesis of highly ethanol-response hollow SnO2 spheres using hydrothermal process in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10854-016-4721-0

    DOI

    http://dx.doi.org/10.1007/s10854-016-4721-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051211250


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.495321.8", 
              "name": [
                "Chongqing Academy of Metrology and Quality Inspection, 401121, Chongqing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Xiang", 
            "id": "sg:person.010463701703.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010463701703.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chongqing University", 
              "id": "https://www.grid.ac/institutes/grid.190737.b", 
              "name": [
                "College of Materials Science and Engineering, Chongqing University, 400030, Chongqing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeng", 
            "givenName": "Wen", 
            "id": "sg:person.01206756052.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206756052.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.snb.2012.05.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000662038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pmatsci.2014.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000830847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2011.10.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005766173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s131114813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007311186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cphc.200700475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010049003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2jm15017d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013848729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4ra10497h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014252345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr400625j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014481091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s120302610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015226302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2ra01307j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020567378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2014.10.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021272781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2014.10.138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030037137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s120607207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031770713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2014.04.095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038598168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2005.10.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039556045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2009.04.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040353613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2015.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041979864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2012.10.134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042575959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3nr04519f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044144212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2013.05.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044769938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matlet.2015.01.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047436614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b704562j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049150375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c1jm13440j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050870054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2014.08.089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051898557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2011.05.082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051943553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2012.10.127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052287580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-014-2524-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053256788", 
              "https://doi.org/10.1007/s10854-014-2524-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/am101169k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055141459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/am405301v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055144851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm4018248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055415530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp8003147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056106701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp8003147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056106701"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-07", 
        "datePublishedReg": "2016-07-01", 
        "description": "The manner how nano building blocks assemble into hierarchical architectures exerts a tremendous influence on gas-sensing property of the metal oxides. Herein, we focus on tuning the 1D SnO2 rectangular nanorods into 3D hierarchical nanoflowers by manipulating the concentration of surfactant (citric acid) as well as the period of hydrothermal process, and then investigate their gas-sensing performance. Nanostructures assembled by short, unordered and well-ordered rectangular nanorods were successfully fabricated, corresponding to infant, abnormal and blooming SnO2 nanoflowers, respectively. In comparison, sensor based on blooming SnO2 nanoflowers exhibited significantly enhanced gas response to ethanol than the other two, not only in terms of the sensitivity but also the response/recovery time, which may be mainly attributed to the sufficient diffusion channel and exposed surface provided by finely dispersed nanorods in the blooming nanoflowers.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10854-016-4721-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136825", 
            "issn": [
              "0957-4522", 
              "1573-482X"
            ], 
            "name": "Journal of Materials Science: Materials in Electronics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "name": "Fabrication and gas-sensing performance of nanorod-assembled SnO2 nanostructures", 
        "pagination": "7448-7453", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f3f3474ee1d3b89c2ef2bccc0ca36ff57916d902a32045d79395ad6f8f025c5d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10854-016-4721-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051211250"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10854-016-4721-0", 
          "https://app.dimensions.ai/details/publication/pub.1051211250"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000516.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10854-016-4721-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4721-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4721-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4721-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4721-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    165 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10854-016-4721-0 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 schema:author N97f608beddba482ebd76d08fe92544be
    4 schema:citation sg:pub.10.1007/s10854-014-2524-8
    5 https://doi.org/10.1002/cphc.200700475
    6 https://doi.org/10.1016/j.jhazmat.2011.05.082
    7 https://doi.org/10.1016/j.matlet.2015.01.019
    8 https://doi.org/10.1016/j.pmatsci.2014.06.003
    9 https://doi.org/10.1016/j.snb.2005.10.024
    10 https://doi.org/10.1016/j.snb.2009.04.026
    11 https://doi.org/10.1016/j.snb.2011.10.021
    12 https://doi.org/10.1016/j.snb.2012.05.053
    13 https://doi.org/10.1016/j.snb.2012.10.127
    14 https://doi.org/10.1016/j.snb.2012.10.134
    15 https://doi.org/10.1016/j.snb.2013.05.029
    16 https://doi.org/10.1016/j.snb.2014.04.095
    17 https://doi.org/10.1016/j.snb.2014.08.089
    18 https://doi.org/10.1016/j.snb.2014.10.032
    19 https://doi.org/10.1016/j.snb.2014.10.138
    20 https://doi.org/10.1016/j.snb.2015.08.003
    21 https://doi.org/10.1021/am101169k
    22 https://doi.org/10.1021/am405301v
    23 https://doi.org/10.1021/cm4018248
    24 https://doi.org/10.1021/cr400625j
    25 https://doi.org/10.1021/jp8003147
    26 https://doi.org/10.1039/b704562j
    27 https://doi.org/10.1039/c1jm13440j
    28 https://doi.org/10.1039/c2jm15017d
    29 https://doi.org/10.1039/c2ra01307j
    30 https://doi.org/10.1039/c3nr04519f
    31 https://doi.org/10.1039/c4ra10497h
    32 https://doi.org/10.3390/s120302610
    33 https://doi.org/10.3390/s120607207
    34 https://doi.org/10.3390/s131114813
    35 schema:datePublished 2016-07
    36 schema:datePublishedReg 2016-07-01
    37 schema:description The manner how nano building blocks assemble into hierarchical architectures exerts a tremendous influence on gas-sensing property of the metal oxides. Herein, we focus on tuning the 1D SnO2 rectangular nanorods into 3D hierarchical nanoflowers by manipulating the concentration of surfactant (citric acid) as well as the period of hydrothermal process, and then investigate their gas-sensing performance. Nanostructures assembled by short, unordered and well-ordered rectangular nanorods were successfully fabricated, corresponding to infant, abnormal and blooming SnO2 nanoflowers, respectively. In comparison, sensor based on blooming SnO2 nanoflowers exhibited significantly enhanced gas response to ethanol than the other two, not only in terms of the sensitivity but also the response/recovery time, which may be mainly attributed to the sufficient diffusion channel and exposed surface provided by finely dispersed nanorods in the blooming nanoflowers.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf Nb3bf4d5ef51e4f7e956f18ee82e3bb0d
    42 Nc9427b9e4e77476692ad896024a24a67
    43 sg:journal.1136825
    44 schema:name Fabrication and gas-sensing performance of nanorod-assembled SnO2 nanostructures
    45 schema:pagination 7448-7453
    46 schema:productId N2d365217ef2349cea03205c27b59959f
    47 N85f9eb25a2c44cb4ac8884b1b039f5ff
    48 Nff828d581ade40b09f53ea30d3ff6d18
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051211250
    50 https://doi.org/10.1007/s10854-016-4721-0
    51 schema:sdDatePublished 2019-04-10T23:25
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher Nf84625c45242448c963857bad54a3501
    54 schema:url http://link.springer.com/10.1007%2Fs10854-016-4721-0
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N2d365217ef2349cea03205c27b59959f schema:name doi
    59 schema:value 10.1007/s10854-016-4721-0
    60 rdf:type schema:PropertyValue
    61 N85f9eb25a2c44cb4ac8884b1b039f5ff schema:name readcube_id
    62 schema:value f3f3474ee1d3b89c2ef2bccc0ca36ff57916d902a32045d79395ad6f8f025c5d
    63 rdf:type schema:PropertyValue
    64 N89f7a77f7d4a4eb18b345e2a4295b3f8 rdf:first sg:person.01206756052.79
    65 rdf:rest rdf:nil
    66 N97f608beddba482ebd76d08fe92544be rdf:first sg:person.010463701703.98
    67 rdf:rest N89f7a77f7d4a4eb18b345e2a4295b3f8
    68 Nb3bf4d5ef51e4f7e956f18ee82e3bb0d schema:volumeNumber 27
    69 rdf:type schema:PublicationVolume
    70 Nc9427b9e4e77476692ad896024a24a67 schema:issueNumber 7
    71 rdf:type schema:PublicationIssue
    72 Nf84625c45242448c963857bad54a3501 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Nff828d581ade40b09f53ea30d3ff6d18 schema:name dimensions_id
    75 schema:value pub.1051211250
    76 rdf:type schema:PropertyValue
    77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Engineering
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Chemical Engineering
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136825 schema:issn 0957-4522
    84 1573-482X
    85 schema:name Journal of Materials Science: Materials in Electronics
    86 rdf:type schema:Periodical
    87 sg:person.010463701703.98 schema:affiliation https://www.grid.ac/institutes/grid.495321.8
    88 schema:familyName Yu
    89 schema:givenName Xiang
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010463701703.98
    91 rdf:type schema:Person
    92 sg:person.01206756052.79 schema:affiliation https://www.grid.ac/institutes/grid.190737.b
    93 schema:familyName Zeng
    94 schema:givenName Wen
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206756052.79
    96 rdf:type schema:Person
    97 sg:pub.10.1007/s10854-014-2524-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053256788
    98 https://doi.org/10.1007/s10854-014-2524-8
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1002/cphc.200700475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010049003
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/j.jhazmat.2011.05.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051943553
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.matlet.2015.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047436614
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.pmatsci.2014.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000830847
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.snb.2005.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039556045
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.snb.2009.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040353613
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.snb.2011.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005766173
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.snb.2012.05.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000662038
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.snb.2012.10.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287580
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.snb.2012.10.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042575959
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.snb.2013.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044769938
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.snb.2014.04.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038598168
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.snb.2014.08.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051898557
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.snb.2014.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021272781
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.snb.2014.10.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030037137
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.snb.2015.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041979864
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1021/am101169k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055141459
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1021/am405301v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055144851
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1021/cm4018248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055415530
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1021/cr400625j schema:sameAs https://app.dimensions.ai/details/publication/pub.1014481091
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1021/jp8003147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056106701
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1039/b704562j schema:sameAs https://app.dimensions.ai/details/publication/pub.1049150375
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1039/c1jm13440j schema:sameAs https://app.dimensions.ai/details/publication/pub.1050870054
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1039/c2jm15017d schema:sameAs https://app.dimensions.ai/details/publication/pub.1013848729
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1039/c2ra01307j schema:sameAs https://app.dimensions.ai/details/publication/pub.1020567378
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1039/c3nr04519f schema:sameAs https://app.dimensions.ai/details/publication/pub.1044144212
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1039/c4ra10497h schema:sameAs https://app.dimensions.ai/details/publication/pub.1014252345
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.3390/s120302610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015226302
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.3390/s120607207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031770713
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.3390/s131114813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007311186
    159 rdf:type schema:CreativeWork
    160 https://www.grid.ac/institutes/grid.190737.b schema:alternateName Chongqing University
    161 schema:name College of Materials Science and Engineering, Chongqing University, 400030, Chongqing, China
    162 rdf:type schema:Organization
    163 https://www.grid.ac/institutes/grid.495321.8 schema:alternateName Chongqing Metrology Quality Inspection and Research Institute
    164 schema:name Chongqing Academy of Metrology and Quality Inspection, 401121, Chongqing, China
    165 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...