Microstructure and coercivity of Sr1−x−x′LaxCax′Fe2n−yCoyOα ferrites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03-17

AUTHORS

Liang Qiao, Mengbo Zhou, Jingwu Zheng, Yao Ying, Shenglei Che

ABSTRACT

M-type strontium hexaferrites with the chemical composition of Sr1−x−x′LaxCax′Fe2n−yCoyOα were prepared by ceramic process. X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscopy, vibrating sample magnetometer and permanent magnetic measuring system were employed to investigate the influence of La–Ca–Co substitution on the microstructure and intrinsic coercivity of the powder and sintered samples. The results show that both Sr-ferrite powders and sintered samples with Ca–La–Co substitution have high intrinsic coercive forces more than 500 KA/m. The acting mechanism of La–Ca–Co substitution on the high coercivity and microstructure was discussed. La–Co substitution causes not only the increase of the anisotropy, but also the decrease of the grain size, which increases the coercivity greatly. The presence of Ca together with La and Co in the substituted system helps to increase the magneto-crystalline anisotropy field. However, it accelerates the sintering and the grain growth, making the intrinsic coercivity of the sintered magnets decrease. More... »

PAGES

7183-7191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3

DOI

http://dx.doi.org/10.1007/s10854-016-4682-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039906791


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiao", 
        "givenName": "Liang", 
        "id": "sg:person.015321332757.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321332757.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Mengbo", 
        "id": "sg:person.014306426557.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306426557.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Jingwu", 
        "id": "sg:person.016222577167.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016222577167.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ying", 
        "givenName": "Yao", 
        "id": "sg:person.010652267212.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652267212.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Che", 
        "givenName": "Shenglei", 
        "id": "sg:person.011030555205.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030555205.15"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-03-17", 
    "datePublishedReg": "2016-03-17", 
    "description": "M-type strontium hexaferrites with the chemical composition of Sr1\u2212x\u2212x\u2032LaxCax\u2032Fe2n\u2212yCoyO\u03b1 were prepared by ceramic process. X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscopy, vibrating sample magnetometer and permanent magnetic measuring system were employed to investigate the influence of La\u2013Ca\u2013Co substitution on the microstructure and intrinsic coercivity of the powder and sintered samples. The results show that both Sr-ferrite powders and sintered samples with Ca\u2013La\u2013Co substitution have high intrinsic coercive forces more than 500\u00a0KA/m. The acting mechanism of La\u2013Ca\u2013Co substitution on the high coercivity and microstructure was discussed. La\u2013Co substitution causes not only the increase of the anisotropy, but also the decrease of the grain size, which increases the coercivity greatly. The presence of Ca together with La and Co in the substituted system helps to increase the magneto-crystalline anisotropy field. However, it accelerates the sintering and the grain growth, making the intrinsic coercivity of the sintered magnets decrease.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10854-016-4682-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "intrinsic coercivity", 
      "La-Ca", 
      "Sr-ferrite powder", 
      "high intrinsic coercive force", 
      "ray photoelectron spectrometer", 
      "magnetic measuring system", 
      "intrinsic coercive force", 
      "ceramic process", 
      "grain growth", 
      "Co substitution", 
      "kA/", 
      "high coercivity", 
      "grain size", 
      "magnets decreases", 
      "magneto-crystalline anisotropy field", 
      "microstructure", 
      "sample magnetometer", 
      "measuring system", 
      "coercive force", 
      "coercivity", 
      "strontium hexaferrite", 
      "photoelectron spectrometer", 
      "CA\u2013LA", 
      "type strontium hexaferrite", 
      "ray diffraction", 
      "powder", 
      "anisotropy field", 
      "electron microscopy", 
      "La\u2013Co substitution", 
      "sintering", 
      "acting mechanism", 
      "chemical composition", 
      "ferrite", 
      "magnetometer", 
      "hexaferrite", 
      "presence of Ca", 
      "diffraction", 
      "system", 
      "force", 
      "microscopy", 
      "anisotropy", 
      "CO", 
      "field", 
      "process", 
      "influence", 
      "spectrometer", 
      "size", 
      "composition", 
      "samples", 
      "decrease", 
      "substituted system", 
      "results", 
      "substitution", 
      "La", 
      "increase", 
      "mechanism", 
      "Ca", 
      "growth", 
      "presence"
    ], 
    "name": "Microstructure and coercivity of Sr1\u2212x\u2212x\u2032LaxCax\u2032Fe2n\u2212yCoyO\u03b1 ferrites", 
    "pagination": "7183-7191", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039906791"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-016-4682-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-016-4682-3", 
      "https://app.dimensions.ai/details/publication/pub.1039906791"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_706.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10854-016-4682-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      84 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-016-4682-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N171c65c569bc441698f4598c64f530d7
4 schema:datePublished 2016-03-17
5 schema:datePublishedReg 2016-03-17
6 schema:description M-type strontium hexaferrites with the chemical composition of Sr1−x−x′LaxCax′Fe2n−yCoyOα were prepared by ceramic process. X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscopy, vibrating sample magnetometer and permanent magnetic measuring system were employed to investigate the influence of La–Ca–Co substitution on the microstructure and intrinsic coercivity of the powder and sintered samples. The results show that both Sr-ferrite powders and sintered samples with Ca–La–Co substitution have high intrinsic coercive forces more than 500 KA/m. The acting mechanism of La–Ca–Co substitution on the high coercivity and microstructure was discussed. La–Co substitution causes not only the increase of the anisotropy, but also the decrease of the grain size, which increases the coercivity greatly. The presence of Ca together with La and Co in the substituted system helps to increase the magneto-crystalline anisotropy field. However, it accelerates the sintering and the grain growth, making the intrinsic coercivity of the sintered magnets decrease.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne9c69df914874519a17304735e1d2409
11 Nf89447577ffe49c094796fabd05251b1
12 sg:journal.1136825
13 schema:keywords CA–LA
14 CO
15 Ca
16 Co substitution
17 La
18 La-Ca
19 La–Co substitution
20 Sr-ferrite powder
21 acting mechanism
22 anisotropy
23 anisotropy field
24 ceramic process
25 chemical composition
26 coercive force
27 coercivity
28 composition
29 decrease
30 diffraction
31 electron microscopy
32 ferrite
33 field
34 force
35 grain growth
36 grain size
37 growth
38 hexaferrite
39 high coercivity
40 high intrinsic coercive force
41 increase
42 influence
43 intrinsic coercive force
44 intrinsic coercivity
45 kA/
46 magnetic measuring system
47 magneto-crystalline anisotropy field
48 magnetometer
49 magnets decreases
50 measuring system
51 mechanism
52 microscopy
53 microstructure
54 photoelectron spectrometer
55 powder
56 presence
57 presence of Ca
58 process
59 ray diffraction
60 ray photoelectron spectrometer
61 results
62 sample magnetometer
63 samples
64 sintering
65 size
66 spectrometer
67 strontium hexaferrite
68 substituted system
69 substitution
70 system
71 type strontium hexaferrite
72 schema:name Microstructure and coercivity of Sr1−x−x′LaxCax′Fe2n−yCoyOα ferrites
73 schema:pagination 7183-7191
74 schema:productId N5ae9112777694636a3aac34515f9c9fb
75 Ndd1e21b3973e48cd80b9f17dfce84d95
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039906791
77 https://doi.org/10.1007/s10854-016-4682-3
78 schema:sdDatePublished 2022-06-01T22:14
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Ndb1cc950af344fc898823c806c028cef
81 schema:url https://doi.org/10.1007/s10854-016-4682-3
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N139a1419f01d488894f42938508a6bb6 rdf:first sg:person.010652267212.18
86 rdf:rest N1617b4d120f94800bb7027c5e3947c84
87 N1617b4d120f94800bb7027c5e3947c84 rdf:first sg:person.011030555205.15
88 rdf:rest rdf:nil
89 N171c65c569bc441698f4598c64f530d7 rdf:first sg:person.015321332757.79
90 rdf:rest Na98ff7844dc54f72885de1e0309e6831
91 N5ae9112777694636a3aac34515f9c9fb schema:name dimensions_id
92 schema:value pub.1039906791
93 rdf:type schema:PropertyValue
94 Na98ff7844dc54f72885de1e0309e6831 rdf:first sg:person.014306426557.76
95 rdf:rest Nfe1a682f33fc42ab870c446b0bbec430
96 Ndb1cc950af344fc898823c806c028cef schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Ndd1e21b3973e48cd80b9f17dfce84d95 schema:name doi
99 schema:value 10.1007/s10854-016-4682-3
100 rdf:type schema:PropertyValue
101 Ne9c69df914874519a17304735e1d2409 schema:issueNumber 7
102 rdf:type schema:PublicationIssue
103 Nf89447577ffe49c094796fabd05251b1 schema:volumeNumber 27
104 rdf:type schema:PublicationVolume
105 Nfe1a682f33fc42ab870c446b0bbec430 rdf:first sg:person.016222577167.89
106 rdf:rest N139a1419f01d488894f42938508a6bb6
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
111 schema:name Materials Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1136825 schema:issn 0957-4522
114 1573-482X
115 schema:name Journal of Materials Science: Materials in Electronics
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.010652267212.18 schema:affiliation grid-institutes:grid.469325.f
119 schema:familyName Ying
120 schema:givenName Yao
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652267212.18
122 rdf:type schema:Person
123 sg:person.011030555205.15 schema:affiliation grid-institutes:grid.469325.f
124 schema:familyName Che
125 schema:givenName Shenglei
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030555205.15
127 rdf:type schema:Person
128 sg:person.014306426557.76 schema:affiliation grid-institutes:grid.469325.f
129 schema:familyName Zhou
130 schema:givenName Mengbo
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306426557.76
132 rdf:type schema:Person
133 sg:person.015321332757.79 schema:affiliation grid-institutes:grid.469325.f
134 schema:familyName Qiao
135 schema:givenName Liang
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321332757.79
137 rdf:type schema:Person
138 sg:person.016222577167.89 schema:affiliation grid-institutes:grid.469325.f
139 schema:familyName Zheng
140 schema:givenName Jingwu
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016222577167.89
142 rdf:type schema:Person
143 grid-institutes:grid.469325.f schema:alternateName College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
144 schema:name College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...