Ontology type: schema:ScholarlyArticle
2016-03-17
AUTHORSLiang Qiao, Mengbo Zhou, Jingwu Zheng, Yao Ying, Shenglei Che
ABSTRACTM-type strontium hexaferrites with the chemical composition of Sr1−x−x′LaxCax′Fe2n−yCoyOα were prepared by ceramic process. X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscopy, vibrating sample magnetometer and permanent magnetic measuring system were employed to investigate the influence of La–Ca–Co substitution on the microstructure and intrinsic coercivity of the powder and sintered samples. The results show that both Sr-ferrite powders and sintered samples with Ca–La–Co substitution have high intrinsic coercive forces more than 500 KA/m. The acting mechanism of La–Ca–Co substitution on the high coercivity and microstructure was discussed. La–Co substitution causes not only the increase of the anisotropy, but also the decrease of the grain size, which increases the coercivity greatly. The presence of Ca together with La and Co in the substituted system helps to increase the magneto-crystalline anisotropy field. However, it accelerates the sintering and the grain growth, making the intrinsic coercivity of the sintered magnets decrease. More... »
PAGES7183-7191
http://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3
DOIhttp://dx.doi.org/10.1007/s10854-016-4682-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039906791
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.469325.f",
"name": [
"College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Qiao",
"givenName": "Liang",
"id": "sg:person.015321332757.79",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321332757.79"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.469325.f",
"name": [
"College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Zhou",
"givenName": "Mengbo",
"id": "sg:person.014306426557.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306426557.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.469325.f",
"name": [
"College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Zheng",
"givenName": "Jingwu",
"id": "sg:person.016222577167.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016222577167.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.469325.f",
"name": [
"College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Ying",
"givenName": "Yao",
"id": "sg:person.010652267212.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652267212.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.469325.f",
"name": [
"College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Che",
"givenName": "Shenglei",
"id": "sg:person.011030555205.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030555205.15"
],
"type": "Person"
}
],
"datePublished": "2016-03-17",
"datePublishedReg": "2016-03-17",
"description": "M-type strontium hexaferrites with the chemical composition of Sr1\u2212x\u2212x\u2032LaxCax\u2032Fe2n\u2212yCoyO\u03b1 were prepared by ceramic process. X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscopy, vibrating sample magnetometer and permanent magnetic measuring system were employed to investigate the influence of La\u2013Ca\u2013Co substitution on the microstructure and intrinsic coercivity of the powder and sintered samples. The results show that both Sr-ferrite powders and sintered samples with Ca\u2013La\u2013Co substitution have high intrinsic coercive forces more than 500\u00a0KA/m. The acting mechanism of La\u2013Ca\u2013Co substitution on the high coercivity and microstructure was discussed. La\u2013Co substitution causes not only the increase of the anisotropy, but also the decrease of the grain size, which increases the coercivity greatly. The presence of Ca together with La and Co in the substituted system helps to increase the magneto-crystalline anisotropy field. However, it accelerates the sintering and the grain growth, making the intrinsic coercivity of the sintered magnets decrease.",
"genre": "article",
"id": "sg:pub.10.1007/s10854-016-4682-3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136825",
"issn": [
"0957-4522",
"1573-482X"
],
"name": "Journal of Materials Science: Materials in Electronics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "27"
}
],
"keywords": [
"intrinsic coercivity",
"La-Ca",
"Sr-ferrite powder",
"high intrinsic coercive force",
"ray photoelectron spectrometer",
"magnetic measuring system",
"intrinsic coercive force",
"ceramic process",
"grain growth",
"Co substitution",
"kA/",
"high coercivity",
"grain size",
"magnets decreases",
"magneto-crystalline anisotropy field",
"microstructure",
"sample magnetometer",
"measuring system",
"coercive force",
"coercivity",
"strontium hexaferrite",
"photoelectron spectrometer",
"CA\u2013LA",
"type strontium hexaferrite",
"ray diffraction",
"powder",
"anisotropy field",
"electron microscopy",
"La\u2013Co substitution",
"sintering",
"acting mechanism",
"chemical composition",
"ferrite",
"magnetometer",
"hexaferrite",
"presence of Ca",
"diffraction",
"system",
"force",
"microscopy",
"anisotropy",
"CO",
"field",
"process",
"influence",
"spectrometer",
"size",
"composition",
"samples",
"decrease",
"substituted system",
"results",
"substitution",
"La",
"increase",
"mechanism",
"Ca",
"growth",
"presence"
],
"name": "Microstructure and coercivity of Sr1\u2212x\u2212x\u2032LaxCax\u2032Fe2n\u2212yCoyO\u03b1 ferrites",
"pagination": "7183-7191",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039906791"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10854-016-4682-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10854-016-4682-3",
"https://app.dimensions.ai/details/publication/pub.1039906791"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:14",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_706.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10854-016-4682-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-016-4682-3'
This table displays all metadata directly associated to this object as RDF triples.
145 TRIPLES
21 PREDICATES
84 URIs
76 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10854-016-4682-3 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N171c65c569bc441698f4598c64f530d7 |
4 | ″ | schema:datePublished | 2016-03-17 |
5 | ″ | schema:datePublishedReg | 2016-03-17 |
6 | ″ | schema:description | M-type strontium hexaferrites with the chemical composition of Sr1−x−x′LaxCax′Fe2n−yCoyOα were prepared by ceramic process. X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscopy, vibrating sample magnetometer and permanent magnetic measuring system were employed to investigate the influence of La–Ca–Co substitution on the microstructure and intrinsic coercivity of the powder and sintered samples. The results show that both Sr-ferrite powders and sintered samples with Ca–La–Co substitution have high intrinsic coercive forces more than 500 KA/m. The acting mechanism of La–Ca–Co substitution on the high coercivity and microstructure was discussed. La–Co substitution causes not only the increase of the anisotropy, but also the decrease of the grain size, which increases the coercivity greatly. The presence of Ca together with La and Co in the substituted system helps to increase the magneto-crystalline anisotropy field. However, it accelerates the sintering and the grain growth, making the intrinsic coercivity of the sintered magnets decrease. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | Ne9c69df914874519a17304735e1d2409 |
11 | ″ | ″ | Nf89447577ffe49c094796fabd05251b1 |
12 | ″ | ″ | sg:journal.1136825 |
13 | ″ | schema:keywords | CA–LA |
14 | ″ | ″ | CO |
15 | ″ | ″ | Ca |
16 | ″ | ″ | Co substitution |
17 | ″ | ″ | La |
18 | ″ | ″ | La-Ca |
19 | ″ | ″ | La–Co substitution |
20 | ″ | ″ | Sr-ferrite powder |
21 | ″ | ″ | acting mechanism |
22 | ″ | ″ | anisotropy |
23 | ″ | ″ | anisotropy field |
24 | ″ | ″ | ceramic process |
25 | ″ | ″ | chemical composition |
26 | ″ | ″ | coercive force |
27 | ″ | ″ | coercivity |
28 | ″ | ″ | composition |
29 | ″ | ″ | decrease |
30 | ″ | ″ | diffraction |
31 | ″ | ″ | electron microscopy |
32 | ″ | ″ | ferrite |
33 | ″ | ″ | field |
34 | ″ | ″ | force |
35 | ″ | ″ | grain growth |
36 | ″ | ″ | grain size |
37 | ″ | ″ | growth |
38 | ″ | ″ | hexaferrite |
39 | ″ | ″ | high coercivity |
40 | ″ | ″ | high intrinsic coercive force |
41 | ″ | ″ | increase |
42 | ″ | ″ | influence |
43 | ″ | ″ | intrinsic coercive force |
44 | ″ | ″ | intrinsic coercivity |
45 | ″ | ″ | kA/ |
46 | ″ | ″ | magnetic measuring system |
47 | ″ | ″ | magneto-crystalline anisotropy field |
48 | ″ | ″ | magnetometer |
49 | ″ | ″ | magnets decreases |
50 | ″ | ″ | measuring system |
51 | ″ | ″ | mechanism |
52 | ″ | ″ | microscopy |
53 | ″ | ″ | microstructure |
54 | ″ | ″ | photoelectron spectrometer |
55 | ″ | ″ | powder |
56 | ″ | ″ | presence |
57 | ″ | ″ | presence of Ca |
58 | ″ | ″ | process |
59 | ″ | ″ | ray diffraction |
60 | ″ | ″ | ray photoelectron spectrometer |
61 | ″ | ″ | results |
62 | ″ | ″ | sample magnetometer |
63 | ″ | ″ | samples |
64 | ″ | ″ | sintering |
65 | ″ | ″ | size |
66 | ″ | ″ | spectrometer |
67 | ″ | ″ | strontium hexaferrite |
68 | ″ | ″ | substituted system |
69 | ″ | ″ | substitution |
70 | ″ | ″ | system |
71 | ″ | ″ | type strontium hexaferrite |
72 | ″ | schema:name | Microstructure and coercivity of Sr1−x−x′LaxCax′Fe2n−yCoyOα ferrites |
73 | ″ | schema:pagination | 7183-7191 |
74 | ″ | schema:productId | N5ae9112777694636a3aac34515f9c9fb |
75 | ″ | ″ | Ndd1e21b3973e48cd80b9f17dfce84d95 |
76 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039906791 |
77 | ″ | ″ | https://doi.org/10.1007/s10854-016-4682-3 |
78 | ″ | schema:sdDatePublished | 2022-06-01T22:14 |
79 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
80 | ″ | schema:sdPublisher | Ndb1cc950af344fc898823c806c028cef |
81 | ″ | schema:url | https://doi.org/10.1007/s10854-016-4682-3 |
82 | ″ | sgo:license | sg:explorer/license/ |
83 | ″ | sgo:sdDataset | articles |
84 | ″ | rdf:type | schema:ScholarlyArticle |
85 | N139a1419f01d488894f42938508a6bb6 | rdf:first | sg:person.010652267212.18 |
86 | ″ | rdf:rest | N1617b4d120f94800bb7027c5e3947c84 |
87 | N1617b4d120f94800bb7027c5e3947c84 | rdf:first | sg:person.011030555205.15 |
88 | ″ | rdf:rest | rdf:nil |
89 | N171c65c569bc441698f4598c64f530d7 | rdf:first | sg:person.015321332757.79 |
90 | ″ | rdf:rest | Na98ff7844dc54f72885de1e0309e6831 |
91 | N5ae9112777694636a3aac34515f9c9fb | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1039906791 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | Na98ff7844dc54f72885de1e0309e6831 | rdf:first | sg:person.014306426557.76 |
95 | ″ | rdf:rest | Nfe1a682f33fc42ab870c446b0bbec430 |
96 | Ndb1cc950af344fc898823c806c028cef | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | Ndd1e21b3973e48cd80b9f17dfce84d95 | schema:name | doi |
99 | ″ | schema:value | 10.1007/s10854-016-4682-3 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | Ne9c69df914874519a17304735e1d2409 | schema:issueNumber | 7 |
102 | ″ | rdf:type | schema:PublicationIssue |
103 | Nf89447577ffe49c094796fabd05251b1 | schema:volumeNumber | 27 |
104 | ″ | rdf:type | schema:PublicationVolume |
105 | Nfe1a682f33fc42ab870c446b0bbec430 | rdf:first | sg:person.016222577167.89 |
106 | ″ | rdf:rest | N139a1419f01d488894f42938508a6bb6 |
107 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Engineering |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Materials Engineering |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | sg:journal.1136825 | schema:issn | 0957-4522 |
114 | ″ | ″ | 1573-482X |
115 | ″ | schema:name | Journal of Materials Science: Materials in Electronics |
116 | ″ | schema:publisher | Springer Nature |
117 | ″ | rdf:type | schema:Periodical |
118 | sg:person.010652267212.18 | schema:affiliation | grid-institutes:grid.469325.f |
119 | ″ | schema:familyName | Ying |
120 | ″ | schema:givenName | Yao |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652267212.18 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.011030555205.15 | schema:affiliation | grid-institutes:grid.469325.f |
124 | ″ | schema:familyName | Che |
125 | ″ | schema:givenName | Shenglei |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030555205.15 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.014306426557.76 | schema:affiliation | grid-institutes:grid.469325.f |
129 | ″ | schema:familyName | Zhou |
130 | ″ | schema:givenName | Mengbo |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306426557.76 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.015321332757.79 | schema:affiliation | grid-institutes:grid.469325.f |
134 | ″ | schema:familyName | Qiao |
135 | ″ | schema:givenName | Liang |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321332757.79 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.016222577167.89 | schema:affiliation | grid-institutes:grid.469325.f |
139 | ″ | schema:familyName | Zheng |
140 | ″ | schema:givenName | Jingwu |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016222577167.89 |
142 | ″ | rdf:type | schema:Person |
143 | grid-institutes:grid.469325.f | schema:alternateName | College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China |
144 | ″ | schema:name | College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China |
145 | ″ | rdf:type | schema:Organization |