Doping effects of ZrO2 nanoparticles on the superconducting properties of Bi-2212 tapes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06

AUTHORS

Chengshan Li, Shengnan Zhang, Ling Gao, Qingbin Hao, Lifeng Bai, Pingxiang Zhang

ABSTRACT

Ag sheathed Bi-2212 single filament tapes with different content of ZrO2 nanoparticles addition were fabricated with powder-in-tube process. X-ray diffractions were performed to examine the lattice structure and phase composition changes of these tapes. With the increase of ZrO2 content, the lattice parameter c decreased, suggesting the change of chemical composition in Bi-2212 phase. Detectable Zr-containing particles can be observed in the tape with ZrO2 content of 3.0 wt% in both XRD patterns and SEM images due to the saturation of Zr4+ irons in Bi-2212 matrix. The thermopower values at room temperature were measured to estimate the carrier concentrations. Attributed to the doping effect of Zr4+, the carrier concentration decreased due to the introduction of excess electrons. Meanwhile, the resistivity measured at room temperature increased and the carrier mobility decreased, suggesting the enhanced carrier scattering mechanism. Due to the change of superconducting properties with ZrO2 doping, the current capacity of Bi-2212 tapes decreased. However, the (Ca, Sr)ZrO3 precipitations with proper size, which can work as effective pinning centers enhanced the flux pinning properties of Bi-2212 tapes. Thus the tape with ZrO2 content of 3.0 wt% regained the high current capacity under magnetic field and a higher Jc can be expected under the magnetic field higher than 25 T. More... »

PAGES

3583-3588

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-015-2872-z

DOI

http://dx.doi.org/10.1007/s10854-015-2872-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051932459


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chengshan", 
        "id": "sg:person.016362517145.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362517145.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shengnan", 
        "id": "sg:person.016043100470.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043100470.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Technological University", 
          "id": "https://www.grid.ac/institutes/grid.460183.8", 
          "name": [
            "College of Material Science and Engineering, Xi\u2019an Technological University, 710048, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Ling", 
        "id": "sg:person.014005543411.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005543411.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Qingbin", 
        "id": "sg:person.07652301570.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652301570.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Lifeng", 
        "id": "sg:person.014275002461.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014275002461.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Pingxiang", 
        "id": "sg:person.013570276106.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570276106.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0921-4534(95)00201-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003195407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/25/1/015011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004654759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/21/12/125005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004754378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004887588", 
          "https://doi.org/10.1007/bf02653013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004887588", 
          "https://doi.org/10.1007/bf02653013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/17/4/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005180557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/25/12/125003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007283286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/25/11/115015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007380312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-014-1956-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012458875", 
          "https://doi.org/10.1007/s10854-014-1956-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(03)00087-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014121338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4872060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018710151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(00)00072-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022694522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018673602045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024604637", 
          "https://doi.org/10.1023/a:1018673602045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-010-1011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033891412", 
          "https://doi.org/10.1007/s10948-010-1011-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/97/1/012179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034368395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040651649", 
          "https://doi.org/10.1038/nmat3887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/26/7/075009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047522177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/9/11/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049007791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/25/6/062002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049483275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.102295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057649872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3143040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057915866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3226867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057921199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.184519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.184519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2005.847648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061505389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2008.920604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061507768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2010.2043080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061509323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2010.2093856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061509973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2013.2237873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061511342"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "Ag sheathed Bi-2212 single filament tapes with different content of ZrO2 nanoparticles addition were fabricated with powder-in-tube process. X-ray diffractions were performed to examine the lattice structure and phase composition changes of these tapes. With the increase of ZrO2 content, the lattice parameter c decreased, suggesting the change of chemical composition in Bi-2212 phase. Detectable Zr-containing particles can be observed in the tape with ZrO2 content of 3.0 wt% in both XRD patterns and SEM images due to the saturation of Zr4+ irons in Bi-2212 matrix. The thermopower values at room temperature were measured to estimate the carrier concentrations. Attributed to the doping effect of Zr4+, the carrier concentration decreased due to the introduction of excess electrons. Meanwhile, the resistivity measured at room temperature increased and the carrier mobility decreased, suggesting the enhanced carrier scattering mechanism. Due to the change of superconducting properties with ZrO2 doping, the current capacity of Bi-2212 tapes decreased. However, the (Ca, Sr)ZrO3 precipitations with proper size, which can work as effective pinning centers enhanced the flux pinning properties of Bi-2212 tapes. Thus the tape with ZrO2 content of 3.0 wt% regained the high current capacity under magnetic field and a higher Jc can be expected under the magnetic field higher than 25 T.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10854-015-2872-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Doping effects of ZrO2 nanoparticles on the superconducting properties of Bi-2212 tapes", 
    "pagination": "3583-3588", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f760405c119adc6f3ebc997070f6a87a2bffe4f34438c66933716337514ca5de"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-015-2872-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051932459"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-015-2872-z", 
      "https://app.dimensions.ai/details/publication/pub.1051932459"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10854-015-2872-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-015-2872-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-015-2872-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-015-2872-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-015-2872-z'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-015-2872-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na48896a889ca4b6fb032e2e33d18547f
4 schema:citation sg:pub.10.1007/bf02653013
5 sg:pub.10.1007/s10854-014-1956-5
6 sg:pub.10.1007/s10948-010-1011-6
7 sg:pub.10.1023/a:1018673602045
8 sg:pub.10.1038/nmat3887
9 https://doi.org/10.1016/0921-4534(95)00201-4
10 https://doi.org/10.1016/s0304-8853(03)00087-8
11 https://doi.org/10.1016/s0921-4534(00)00072-1
12 https://doi.org/10.1063/1.102295
13 https://doi.org/10.1063/1.3143040
14 https://doi.org/10.1063/1.3226867
15 https://doi.org/10.1063/1.4872060
16 https://doi.org/10.1088/0953-2048/17/4/012
17 https://doi.org/10.1088/0953-2048/21/12/125005
18 https://doi.org/10.1088/0953-2048/25/1/015011
19 https://doi.org/10.1088/0953-2048/25/11/115015
20 https://doi.org/10.1088/0953-2048/25/12/125003
21 https://doi.org/10.1088/0953-2048/25/6/062002
22 https://doi.org/10.1088/0953-2048/26/7/075009
23 https://doi.org/10.1088/0953-2048/9/11/008
24 https://doi.org/10.1088/1742-6596/97/1/012179
25 https://doi.org/10.1103/physrevb.83.184519
26 https://doi.org/10.1103/physrevlett.58.908
27 https://doi.org/10.1103/physrevlett.75.4114
28 https://doi.org/10.1109/tasc.2005.847648
29 https://doi.org/10.1109/tasc.2008.920604
30 https://doi.org/10.1109/tasc.2010.2043080
31 https://doi.org/10.1109/tasc.2010.2093856
32 https://doi.org/10.1109/tasc.2013.2237873
33 schema:datePublished 2015-06
34 schema:datePublishedReg 2015-06-01
35 schema:description Ag sheathed Bi-2212 single filament tapes with different content of ZrO2 nanoparticles addition were fabricated with powder-in-tube process. X-ray diffractions were performed to examine the lattice structure and phase composition changes of these tapes. With the increase of ZrO2 content, the lattice parameter c decreased, suggesting the change of chemical composition in Bi-2212 phase. Detectable Zr-containing particles can be observed in the tape with ZrO2 content of 3.0 wt% in both XRD patterns and SEM images due to the saturation of Zr4+ irons in Bi-2212 matrix. The thermopower values at room temperature were measured to estimate the carrier concentrations. Attributed to the doping effect of Zr4+, the carrier concentration decreased due to the introduction of excess electrons. Meanwhile, the resistivity measured at room temperature increased and the carrier mobility decreased, suggesting the enhanced carrier scattering mechanism. Due to the change of superconducting properties with ZrO2 doping, the current capacity of Bi-2212 tapes decreased. However, the (Ca, Sr)ZrO3 precipitations with proper size, which can work as effective pinning centers enhanced the flux pinning properties of Bi-2212 tapes. Thus the tape with ZrO2 content of 3.0 wt% regained the high current capacity under magnetic field and a higher Jc can be expected under the magnetic field higher than 25 T.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N61a323c309434b93a4fb8d6345d7de1e
40 Nf1e9712709784baea3f45fa9e282383c
41 sg:journal.1136825
42 schema:name Doping effects of ZrO2 nanoparticles on the superconducting properties of Bi-2212 tapes
43 schema:pagination 3583-3588
44 schema:productId N49c8d5cf982645f78aaaaaed9f0644c0
45 N97716d3ce9c04e6c8d8bed501702c3cf
46 Nf4828df991a94bdcb18a80f9f649c322
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051932459
48 https://doi.org/10.1007/s10854-015-2872-z
49 schema:sdDatePublished 2019-04-11T01:08
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N2f467c416205497eb8771413a55e1619
52 schema:url http://link.springer.com/10.1007%2Fs10854-015-2872-z
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0a811768cad241819033692d7648c0fc schema:name Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi’an, China
57 rdf:type schema:Organization
58 N1c89bf0c977045f49984f955c71fedf9 rdf:first sg:person.07652301570.11
59 rdf:rest Na8c1fe2d8b824dd7a36cb17a15412a82
60 N2f467c416205497eb8771413a55e1619 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N3690dd6b2e4148258c6bfd24dbbbc09b rdf:first sg:person.014005543411.18
63 rdf:rest N1c89bf0c977045f49984f955c71fedf9
64 N3e019aa5e0a54480ace676808f4babf8 schema:name Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi’an, China
65 rdf:type schema:Organization
66 N49c8d5cf982645f78aaaaaed9f0644c0 schema:name dimensions_id
67 schema:value pub.1051932459
68 rdf:type schema:PropertyValue
69 N61a323c309434b93a4fb8d6345d7de1e schema:volumeNumber 26
70 rdf:type schema:PublicationVolume
71 N71fcd275e4d24fa89c2785c40d4b5ec0 schema:name Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi’an, China
72 rdf:type schema:Organization
73 N781218a56a5b4ebfaebf3bd5859304b8 rdf:first sg:person.013570276106.17
74 rdf:rest rdf:nil
75 N92d80b93df1646228741baa28cb778ed schema:name Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi’an, China
76 rdf:type schema:Organization
77 N97716d3ce9c04e6c8d8bed501702c3cf schema:name readcube_id
78 schema:value f760405c119adc6f3ebc997070f6a87a2bffe4f34438c66933716337514ca5de
79 rdf:type schema:PropertyValue
80 Na48896a889ca4b6fb032e2e33d18547f rdf:first sg:person.016362517145.73
81 rdf:rest Nb46296763b60457fa9652857337b9243
82 Na8c1fe2d8b824dd7a36cb17a15412a82 rdf:first sg:person.014275002461.25
83 rdf:rest N781218a56a5b4ebfaebf3bd5859304b8
84 Nb46296763b60457fa9652857337b9243 rdf:first sg:person.016043100470.96
85 rdf:rest N3690dd6b2e4148258c6bfd24dbbbc09b
86 Nf1e9712709784baea3f45fa9e282383c schema:issueNumber 6
87 rdf:type schema:PublicationIssue
88 Nf3a6eec9dd254168975540db31f27fe6 schema:name Superconducting Materials Research Center, Northwest Institute of Nonferrous Metal Research, 710016, Xi’an, China
89 rdf:type schema:Organization
90 Nf4828df991a94bdcb18a80f9f649c322 schema:name doi
91 schema:value 10.1007/s10854-015-2872-z
92 rdf:type schema:PropertyValue
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
97 schema:name Materials Engineering
98 rdf:type schema:DefinedTerm
99 sg:journal.1136825 schema:issn 0957-4522
100 1573-482X
101 schema:name Journal of Materials Science: Materials in Electronics
102 rdf:type schema:Periodical
103 sg:person.013570276106.17 schema:affiliation N71fcd275e4d24fa89c2785c40d4b5ec0
104 schema:familyName Zhang
105 schema:givenName Pingxiang
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570276106.17
107 rdf:type schema:Person
108 sg:person.014005543411.18 schema:affiliation https://www.grid.ac/institutes/grid.460183.8
109 schema:familyName Gao
110 schema:givenName Ling
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005543411.18
112 rdf:type schema:Person
113 sg:person.014275002461.25 schema:affiliation N0a811768cad241819033692d7648c0fc
114 schema:familyName Bai
115 schema:givenName Lifeng
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014275002461.25
117 rdf:type schema:Person
118 sg:person.016043100470.96 schema:affiliation Nf3a6eec9dd254168975540db31f27fe6
119 schema:familyName Zhang
120 schema:givenName Shengnan
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043100470.96
122 rdf:type schema:Person
123 sg:person.016362517145.73 schema:affiliation N3e019aa5e0a54480ace676808f4babf8
124 schema:familyName Li
125 schema:givenName Chengshan
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362517145.73
127 rdf:type schema:Person
128 sg:person.07652301570.11 schema:affiliation N92d80b93df1646228741baa28cb778ed
129 schema:familyName Hao
130 schema:givenName Qingbin
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652301570.11
132 rdf:type schema:Person
133 sg:pub.10.1007/bf02653013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004887588
134 https://doi.org/10.1007/bf02653013
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10854-014-1956-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012458875
137 https://doi.org/10.1007/s10854-014-1956-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10948-010-1011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033891412
140 https://doi.org/10.1007/s10948-010-1011-6
141 rdf:type schema:CreativeWork
142 sg:pub.10.1023/a:1018673602045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024604637
143 https://doi.org/10.1023/a:1018673602045
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nmat3887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040651649
146 https://doi.org/10.1038/nmat3887
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0921-4534(95)00201-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003195407
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0304-8853(03)00087-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014121338
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0921-4534(00)00072-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022694522
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.102295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057649872
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.3143040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057915866
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.3226867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057921199
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1063/1.4872060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018710151
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/0953-2048/17/4/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005180557
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/0953-2048/21/12/125005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004754378
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0953-2048/25/1/015011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004654759
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/0953-2048/25/11/115015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007380312
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0953-2048/25/12/125003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007283286
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/0953-2048/25/6/062002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049483275
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0953-2048/26/7/075009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047522177
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0953-2048/9/11/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049007791
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/1742-6596/97/1/012179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034368395
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.83.184519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060635624
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.58.908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795429
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.75.4114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812232
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tasc.2005.847648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061505389
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/tasc.2008.920604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061507768
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/tasc.2010.2043080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061509323
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/tasc.2010.2093856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061509973
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/tasc.2013.2237873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061511342
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.460183.8 schema:alternateName Xi'an Technological University
197 schema:name College of Material Science and Engineering, Xi’an Technological University, 710048, Xi’an, China
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...