Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-02-05

AUTHORS

F. Akbar, M. Kolahdouz, Sh. Larimian, B. Radfar, H. H. Radamson

ABSTRACT

In the last decade, as semiconductor industry was approaching the end of the exponential Moore’s roadmap for device downscaling, the necessity of finding new candidate materials has forced many research groups to explore many different types of non-conventional materials. Among them, graphene, CNTs and organic conductors are the most successful alternatives. Finding a material with metallic properties combined with field effect characteristics on nanoscale level has been always a dream to continue the ever-shrinking road of the nanoelectronics. Due to its fantastic features such as high mobility, optical transparency, room temperature quantum Hall effect, mechanical stiffness, etc. the atomically thin carbon layer, graphene, has attracted the industry’s attention not only in the micro-, nano-, and opto-electronics but also in biotechnology. This paper reviews the basics and previous works on graphene technology and its developments. Compatibility of this material with Si processing technology is its crucial characteristic for mass production. This study also reviews the physical and electrical properties of graphene as a building block for other carbon allotropes. Different growth methods and a wide range of graphene’s applications will be discussed and compared. A brief comparison on the performance result of different types of devices has also been presented. Until now, the main focus of research has been on the background physics and its application in electronic devices. But, according to the recent works on its applications in photonics and optoelectronics, where it benefits from the combination of its unique optical and electronic properties, even without a bandgap, this material enables ultrawide-band tunability. Here in this article we review different applications and graphene’s advantages and drawbacks will be mentioned to conclude at the end. More... »

PAGES

4347-4379

References to SciGraph publications

  • 2012-09-29. Characterization of multilayer graphene prepared from short-time processed graphite oxide flake in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2010-04-04. Facile synthesis of high-quality graphene nanoribbons in NATURE NANOTECHNOLOGY
  • 2013-09-22. Randomly oriented graphene flakes film fabrication from graphite dispersed in N-methyl-pyrrolidone by using electrohydrodynamic atomization technique in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2008-12-07. Gram-scale production of graphene based on solvothermal synthesis and sonication in NATURE NANOTECHNOLOGY
  • 2013-09-15. Chip-integrated ultrafast graphene photodetector with high responsivity in NATURE PHOTONICS
  • 2010-09-01. High-speed graphene transistors with a self-aligned nanowire gate in NATURE
  • 2013-09-15. CMOS-compatible graphene photodetector covering all optical communication bands in NATURE PHOTONICS
  • 2014-01-28. Hysteresis I–V nature of mechanically exfoliated graphene FET in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2010-08-31. Graphene photonics and optoelectronics in NATURE PHOTONICS
  • 2008-06-08. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography in NATURE NANOTECHNOLOGY
  • 2009-06. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces in NANO RESEARCH
  • 2014-07-19. Comprehensive study of graphene grown by chemical vapor deposition in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2011-04-24. Microscopic polarization in bilayer graphene in NATURE PHYSICS
  • 2009-09-27. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering in NATURE PHYSICS
  • 2008-08-10. High-yield production of graphene by liquid-phase exfoliation of graphite in NATURE NANOTECHNOLOGY
  • 2012-06-03. Dual-gated bilayer graphene hot-electron bolometer in NATURE NANOTECHNOLOGY
  • 2013-06-07. Synthesis of graphene on Co/SiC structure in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2007-03. The structure of suspended graphene sheets in NATURE
  • 2000-08. Criteria for Choosing Transparent Conductors in MRS BULLETIN
  • 2008-03-23. Intrinsic and extrinsic performance limits of graphene devices on SiO2 in NATURE NANOTECHNOLOGY
  • 2008-03. Operating mechanism of light-emitting electrochemical cells in NATURE MATERIALS
  • 2009-02-08. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide in NATURE MATERIALS
  • 2013-10-30. Copper/silver nanoparticle incorporated graphene films prepared by a low-temperature solution method for transparent conductive electrodes in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2005-11. Two-dimensional gas of massless Dirac fermions in graphene in NATURE
  • 2008-07-31. Controlled nanocutting of graphene in NANO RESEARCH
  • 2014-11-04. Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2010-03-28. Graphene photodetectors for high-speed optical communications in NATURE PHOTONICS
  • 2014-06-06. Highly efficient photocatalytic performance of graphene–Ag3VO4 composites in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2008-06-29. Contact and edge effects in graphene devices in NATURE NANOTECHNOLOGY
  • 2009-06. Direct observation of a widely tunable bandgap in bilayer graphene in NATURE
  • 2009-04. Narrow graphene nanoribbons from carbon nanotubes in NATURE
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2008-04-13. Charged-impurity scattering in graphene in NATURE PHYSICS
  • 2012-09-09. Graphene field-effect transistors as room-temperature terahertz detectors in NATURE MATERIALS
  • 2011-04-06. High-frequency, scaled graphene transistors on diamond-like carbon in NATURE
  • 2009-01-14. Large-scale pattern growth of graphene films for stretchable transparent electrodes in NATURE
  • 2013-05-26. In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2011-07-22. Thermal properties of graphene and nanostructured carbon materials in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10854-015-2725-9

    DOI

    http://dx.doi.org/10.1007/s10854-015-2725-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008081469


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akbar", 
            "givenName": "F.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolahdouz", 
            "givenName": "M.", 
            "id": "sg:person.012315542161.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315542161.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Larimian", 
            "givenName": "Sh.", 
            "id": "sg:person.01265415061.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265415061.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radfar", 
            "givenName": "B.", 
            "id": "sg:person.015333676167.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333676167.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan. 22-26, Electrum 229, 16640, Kista, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.5037.1", 
              "name": [
                "School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan. 22-26, Electrum 229, 16640, Kista, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radamson", 
            "givenName": "H. H.", 
            "id": "sg:person.013143306513.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143306513.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphoton.2010.186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031313355", 
              "https://doi.org/10.1038/nphoton.2010.186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-012-0920-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017952569", 
              "https://doi.org/10.1007/s10854-012-0920-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2010.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006827577", 
              "https://doi.org/10.1038/nphoton.2010.40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409071", 
              "https://doi.org/10.1038/nphys1988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020495965", 
              "https://doi.org/10.1038/nmat3417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027275519", 
              "https://doi.org/10.1038/nature09405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011191271", 
              "https://doi.org/10.1038/nphys1420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037486815", 
              "https://doi.org/10.1038/nnano.2008.365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020219312", 
              "https://doi.org/10.1038/nphoton.2013.240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032209533", 
              "https://doi.org/10.1038/nnano.2008.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043686943", 
              "https://doi.org/10.1038/nature08105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005726293", 
              "https://doi.org/10.1038/nnano.2008.149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003444244", 
              "https://doi.org/10.1038/nphoton.2013.253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-014-2042-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049871025", 
              "https://doi.org/10.1007/s10854-014-2042-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-013-1494-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009380558", 
              "https://doi.org/10.1007/s10854-013-1494-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006813127", 
              "https://doi.org/10.1038/nnano.2008.172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024874242", 
              "https://doi.org/10.1038/nphys935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037553678", 
              "https://doi.org/10.1038/nnano.2008.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-014-2170-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025338329", 
              "https://doi.org/10.1007/s10854-014-2170-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032305837", 
              "https://doi.org/10.1038/nmat2382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023991100", 
              "https://doi.org/10.1038/nmat3064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/mrs2000.151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067967515", 
              "https://doi.org/10.1557/mrs2000.151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030811740", 
              "https://doi.org/10.1038/nature05545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-013-1320-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012647661", 
              "https://doi.org/10.1007/s10854-013-1320-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023355226", 
              "https://doi.org/10.1038/nature09979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-009-9059-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041432721", 
              "https://doi.org/10.1007/s12274-009-9059-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521124", 
              "https://doi.org/10.1038/nature07719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033318923", 
              "https://doi.org/10.1038/nature07872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-014-1727-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004828773", 
              "https://doi.org/10.1007/s10854-014-1727-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-013-1569-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018392360", 
              "https://doi.org/10.1007/s10854-013-1569-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-008-8020-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049726473", 
              "https://doi.org/10.1007/s12274-008-8020-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048019805", 
              "https://doi.org/10.1038/nnano.2012.88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-014-2440-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017872849", 
              "https://doi.org/10.1007/s10854-014-2440-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023528767", 
              "https://doi.org/10.1038/nature07919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035301718", 
              "https://doi.org/10.1038/nnano.2010.54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045228148", 
              "https://doi.org/10.1038/nmat2128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-013-1297-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009868617", 
              "https://doi.org/10.1007/s10854-013-1297-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-02-05", 
        "datePublishedReg": "2015-02-05", 
        "description": "In the last decade, as semiconductor industry was approaching the end of the exponential Moore\u2019s roadmap for device downscaling, the necessity of finding new candidate materials has forced many research groups to explore many different types of non-conventional materials. Among them, graphene, CNTs and organic conductors are the most successful alternatives. Finding a material with metallic properties combined with field effect characteristics on nanoscale level has been always a dream to continue the ever-shrinking road of the nanoelectronics. Due to its fantastic features such as high mobility, optical transparency, room temperature quantum Hall effect, mechanical stiffness, etc. the atomically thin carbon layer, graphene, has attracted the industry\u2019s attention not only in the micro-, nano-, and opto-electronics but also in biotechnology. This paper reviews the basics and previous works on graphene technology and its developments. Compatibility of this material with Si processing technology is its crucial characteristic for mass production. This study also reviews the physical and electrical properties of graphene as a building block for other carbon allotropes. Different growth methods and a wide range of graphene\u2019s applications will be discussed and compared. A brief comparison on the performance result of different types of devices has also been presented. Until now, the main focus of research has been on the background physics and its application in electronic devices. But, according to the recent works on its applications in photonics and optoelectronics, where it benefits from the combination of its unique optical and electronic properties, even without a bandgap, this material enables ultrawide-band tunability. Here in this article we review different applications and graphene\u2019s advantages and drawbacks will be mentioned to conclude at the end.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10854-015-2725-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136825", 
            "issn": [
              "0957-4522", 
              "1573-482X"
            ], 
            "name": "Journal of Materials Science: Materials in Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "quantum Hall effect", 
          "Si processing technology", 
          "non-conventional materials", 
          "different growth methods", 
          "background physics", 
          "Hall effect", 
          "thin carbon layer", 
          "new candidate materials", 
          "field effect characteristics", 
          "graphene applications", 
          "graphene technology", 
          "optical transparency", 
          "electronic properties", 
          "graphene synthesis", 
          "candidate materials", 
          "organic conductors", 
          "graphene", 
          "mechanical stiffness", 
          "carbon layer", 
          "electrical properties", 
          "nanoscale level", 
          "processing technology", 
          "nanoelectronics", 
          "semiconductor industry", 
          "metallic properties", 
          "electronic devices", 
          "carbon allotropes", 
          "growth method", 
          "mass production", 
          "high mobility", 
          "fantastic features", 
          "effect characteristics", 
          "devices", 
          "nanophotonics", 
          "materials", 
          "photonics", 
          "optoelectronics", 
          "tunability", 
          "physics", 
          "performance results", 
          "bandgap", 
          "industry attention", 
          "different applications", 
          "properties", 
          "applications", 
          "building blocks", 
          "allotropes", 
          "different types", 
          "technology", 
          "stiffness", 
          "nano", 
          "CNTs", 
          "brief comparison", 
          "layer", 
          "conductors", 
          "micro", 
          "main focus", 
          "wide range", 
          "crucial characteristics", 
          "characteristics", 
          "compatibility", 
          "recent work", 
          "transparency", 
          "roadmap", 
          "work", 
          "road", 
          "previous work", 
          "industry", 
          "mobility", 
          "drawbacks", 
          "research groups", 
          "successful alternative", 
          "range", 
          "characterization", 
          "advantages", 
          "end", 
          "method", 
          "last decade", 
          "types", 
          "alternative", 
          "basics", 
          "paper", 
          "results", 
          "comparison", 
          "combination", 
          "production", 
          "effect", 
          "attention", 
          "features", 
          "block", 
          "biotechnology", 
          "necessity", 
          "development", 
          "research", 
          "synthesis", 
          "study", 
          "focus", 
          "decades", 
          "article", 
          "levels", 
          "dreams", 
          "group", 
          "exponential Moore\u2019s roadmap", 
          "Moore\u2019s roadmap", 
          "room temperature quantum Hall effect", 
          "temperature quantum Hall effect", 
          "ultrawide-band tunability"
        ], 
        "name": "Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing", 
        "pagination": "4347-4379", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008081469"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10854-015-2725-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10854-015-2725-9", 
          "https://app.dimensions.ai/details/publication/pub.1008081469"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_651.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10854-015-2725-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-015-2725-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-015-2725-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-015-2725-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-015-2725-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    347 TRIPLES      22 PREDICATES      169 URIs      123 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10854-015-2725-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N27ba7d2025c34078b1a2a850c564054c
    4 schema:citation sg:pub.10.1007/s10854-012-0920-5
    5 sg:pub.10.1007/s10854-013-1297-9
    6 sg:pub.10.1007/s10854-013-1320-1
    7 sg:pub.10.1007/s10854-013-1494-6
    8 sg:pub.10.1007/s10854-013-1569-4
    9 sg:pub.10.1007/s10854-014-1727-3
    10 sg:pub.10.1007/s10854-014-2042-8
    11 sg:pub.10.1007/s10854-014-2170-1
    12 sg:pub.10.1007/s10854-014-2440-y
    13 sg:pub.10.1007/s12274-008-8020-9
    14 sg:pub.10.1007/s12274-009-9059-y
    15 sg:pub.10.1038/nature04233
    16 sg:pub.10.1038/nature05545
    17 sg:pub.10.1038/nature07719
    18 sg:pub.10.1038/nature07872
    19 sg:pub.10.1038/nature07919
    20 sg:pub.10.1038/nature08105
    21 sg:pub.10.1038/nature09405
    22 sg:pub.10.1038/nature09979
    23 sg:pub.10.1038/nmat2128
    24 sg:pub.10.1038/nmat2382
    25 sg:pub.10.1038/nmat3064
    26 sg:pub.10.1038/nmat3417
    27 sg:pub.10.1038/nnano.2008.149
    28 sg:pub.10.1038/nnano.2008.172
    29 sg:pub.10.1038/nnano.2008.215
    30 sg:pub.10.1038/nnano.2008.365
    31 sg:pub.10.1038/nnano.2008.58
    32 sg:pub.10.1038/nnano.2010.54
    33 sg:pub.10.1038/nnano.2012.88
    34 sg:pub.10.1038/nphoton.2010.186
    35 sg:pub.10.1038/nphoton.2010.40
    36 sg:pub.10.1038/nphoton.2013.240
    37 sg:pub.10.1038/nphoton.2013.253
    38 sg:pub.10.1038/nphys1420
    39 sg:pub.10.1038/nphys1988
    40 sg:pub.10.1038/nphys935
    41 sg:pub.10.1557/mrs2000.151
    42 schema:datePublished 2015-02-05
    43 schema:datePublishedReg 2015-02-05
    44 schema:description In the last decade, as semiconductor industry was approaching the end of the exponential Moore’s roadmap for device downscaling, the necessity of finding new candidate materials has forced many research groups to explore many different types of non-conventional materials. Among them, graphene, CNTs and organic conductors are the most successful alternatives. Finding a material with metallic properties combined with field effect characteristics on nanoscale level has been always a dream to continue the ever-shrinking road of the nanoelectronics. Due to its fantastic features such as high mobility, optical transparency, room temperature quantum Hall effect, mechanical stiffness, etc. the atomically thin carbon layer, graphene, has attracted the industry’s attention not only in the micro-, nano-, and opto-electronics but also in biotechnology. This paper reviews the basics and previous works on graphene technology and its developments. Compatibility of this material with Si processing technology is its crucial characteristic for mass production. This study also reviews the physical and electrical properties of graphene as a building block for other carbon allotropes. Different growth methods and a wide range of graphene’s applications will be discussed and compared. A brief comparison on the performance result of different types of devices has also been presented. Until now, the main focus of research has been on the background physics and its application in electronic devices. But, according to the recent works on its applications in photonics and optoelectronics, where it benefits from the combination of its unique optical and electronic properties, even without a bandgap, this material enables ultrawide-band tunability. Here in this article we review different applications and graphene’s advantages and drawbacks will be mentioned to conclude at the end.
    45 schema:genre article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N57fd333c85c84b1599646aade6d8e5cc
    49 N57ff5fd627e8464fb0b9b99f2361a030
    50 sg:journal.1136825
    51 schema:keywords CNTs
    52 Hall effect
    53 Moore’s roadmap
    54 Si processing technology
    55 advantages
    56 allotropes
    57 alternative
    58 applications
    59 article
    60 attention
    61 background physics
    62 bandgap
    63 basics
    64 biotechnology
    65 block
    66 brief comparison
    67 building blocks
    68 candidate materials
    69 carbon allotropes
    70 carbon layer
    71 characteristics
    72 characterization
    73 combination
    74 comparison
    75 compatibility
    76 conductors
    77 crucial characteristics
    78 decades
    79 development
    80 devices
    81 different applications
    82 different growth methods
    83 different types
    84 drawbacks
    85 dreams
    86 effect
    87 effect characteristics
    88 electrical properties
    89 electronic devices
    90 electronic properties
    91 end
    92 exponential Moore’s roadmap
    93 fantastic features
    94 features
    95 field effect characteristics
    96 focus
    97 graphene
    98 graphene applications
    99 graphene synthesis
    100 graphene technology
    101 group
    102 growth method
    103 high mobility
    104 industry
    105 industry attention
    106 last decade
    107 layer
    108 levels
    109 main focus
    110 mass production
    111 materials
    112 mechanical stiffness
    113 metallic properties
    114 method
    115 micro
    116 mobility
    117 nano
    118 nanoelectronics
    119 nanophotonics
    120 nanoscale level
    121 necessity
    122 new candidate materials
    123 non-conventional materials
    124 optical transparency
    125 optoelectronics
    126 organic conductors
    127 paper
    128 performance results
    129 photonics
    130 physics
    131 previous work
    132 processing technology
    133 production
    134 properties
    135 quantum Hall effect
    136 range
    137 recent work
    138 research
    139 research groups
    140 results
    141 road
    142 roadmap
    143 room temperature quantum Hall effect
    144 semiconductor industry
    145 stiffness
    146 study
    147 successful alternative
    148 synthesis
    149 technology
    150 temperature quantum Hall effect
    151 thin carbon layer
    152 transparency
    153 tunability
    154 types
    155 ultrawide-band tunability
    156 wide range
    157 work
    158 schema:name Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing
    159 schema:pagination 4347-4379
    160 schema:productId N07ea734631c84a14b0020440c2dd0253
    161 Nafcb5bb90a2c4de3b667e4ae07ca6674
    162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081469
    163 https://doi.org/10.1007/s10854-015-2725-9
    164 schema:sdDatePublished 2022-01-01T18:35
    165 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    166 schema:sdPublisher N7b7e604e47ea4cdd9070e45cb1fc6d28
    167 schema:url https://doi.org/10.1007/s10854-015-2725-9
    168 sgo:license sg:explorer/license/
    169 sgo:sdDataset articles
    170 rdf:type schema:ScholarlyArticle
    171 N07ea734631c84a14b0020440c2dd0253 schema:name doi
    172 schema:value 10.1007/s10854-015-2725-9
    173 rdf:type schema:PropertyValue
    174 N2668c050f0064024b97b7ad5c5931920 rdf:first sg:person.015333676167.33
    175 rdf:rest N61bb6abee0a541f887c52a77d9625f94
    176 N27ba7d2025c34078b1a2a850c564054c rdf:first N7fb56dbdbfd34c079d5a22f47a2f8ce6
    177 rdf:rest N58bf039ebba34a2480aeef765f874c2f
    178 N57fd333c85c84b1599646aade6d8e5cc schema:issueNumber 7
    179 rdf:type schema:PublicationIssue
    180 N57ff5fd627e8464fb0b9b99f2361a030 schema:volumeNumber 26
    181 rdf:type schema:PublicationVolume
    182 N58bf039ebba34a2480aeef765f874c2f rdf:first sg:person.012315542161.61
    183 rdf:rest N6fb86f9acabe48cd9c4dad2decd8e7fa
    184 N61bb6abee0a541f887c52a77d9625f94 rdf:first sg:person.013143306513.69
    185 rdf:rest rdf:nil
    186 N6fb86f9acabe48cd9c4dad2decd8e7fa rdf:first sg:person.01265415061.06
    187 rdf:rest N2668c050f0064024b97b7ad5c5931920
    188 N7b7e604e47ea4cdd9070e45cb1fc6d28 schema:name Springer Nature - SN SciGraph project
    189 rdf:type schema:Organization
    190 N7fb56dbdbfd34c079d5a22f47a2f8ce6 schema:affiliation grid-institutes:grid.46072.37
    191 schema:familyName Akbar
    192 schema:givenName F.
    193 rdf:type schema:Person
    194 Nafcb5bb90a2c4de3b667e4ae07ca6674 schema:name dimensions_id
    195 schema:value pub.1008081469
    196 rdf:type schema:PropertyValue
    197 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Engineering
    199 rdf:type schema:DefinedTerm
    200 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    201 schema:name Materials Engineering
    202 rdf:type schema:DefinedTerm
    203 sg:journal.1136825 schema:issn 0957-4522
    204 1573-482X
    205 schema:name Journal of Materials Science: Materials in Electronics
    206 schema:publisher Springer Nature
    207 rdf:type schema:Periodical
    208 sg:person.012315542161.61 schema:affiliation grid-institutes:grid.46072.37
    209 schema:familyName Kolahdouz
    210 schema:givenName M.
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315542161.61
    212 rdf:type schema:Person
    213 sg:person.01265415061.06 schema:affiliation grid-institutes:grid.46072.37
    214 schema:familyName Larimian
    215 schema:givenName Sh.
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265415061.06
    217 rdf:type schema:Person
    218 sg:person.013143306513.69 schema:affiliation grid-institutes:grid.5037.1
    219 schema:familyName Radamson
    220 schema:givenName H. H.
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143306513.69
    222 rdf:type schema:Person
    223 sg:person.015333676167.33 schema:affiliation grid-institutes:grid.46072.37
    224 schema:familyName Radfar
    225 schema:givenName B.
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333676167.33
    227 rdf:type schema:Person
    228 sg:pub.10.1007/s10854-012-0920-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017952569
    229 https://doi.org/10.1007/s10854-012-0920-5
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s10854-013-1297-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009868617
    232 https://doi.org/10.1007/s10854-013-1297-9
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s10854-013-1320-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012647661
    235 https://doi.org/10.1007/s10854-013-1320-1
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s10854-013-1494-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009380558
    238 https://doi.org/10.1007/s10854-013-1494-6
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s10854-013-1569-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018392360
    241 https://doi.org/10.1007/s10854-013-1569-4
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s10854-014-1727-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004828773
    244 https://doi.org/10.1007/s10854-014-1727-3
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s10854-014-2042-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049871025
    247 https://doi.org/10.1007/s10854-014-2042-8
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s10854-014-2170-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025338329
    250 https://doi.org/10.1007/s10854-014-2170-1
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s10854-014-2440-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017872849
    253 https://doi.org/10.1007/s10854-014-2440-y
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s12274-008-8020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049726473
    256 https://doi.org/10.1007/s12274-008-8020-9
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s12274-009-9059-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041432721
    259 https://doi.org/10.1007/s12274-009-9059-y
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    262 https://doi.org/10.1038/nature04233
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nature05545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030811740
    265 https://doi.org/10.1038/nature05545
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nature07719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521124
    268 https://doi.org/10.1038/nature07719
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/nature07872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033318923
    271 https://doi.org/10.1038/nature07872
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/nature07919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528767
    274 https://doi.org/10.1038/nature07919
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/nature08105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686943
    277 https://doi.org/10.1038/nature08105
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nature09405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027275519
    280 https://doi.org/10.1038/nature09405
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nature09979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023355226
    283 https://doi.org/10.1038/nature09979
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nmat2128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045228148
    286 https://doi.org/10.1038/nmat2128
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nmat2382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032305837
    289 https://doi.org/10.1038/nmat2382
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/nmat3064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023991100
    292 https://doi.org/10.1038/nmat3064
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nmat3417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020495965
    295 https://doi.org/10.1038/nmat3417
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nnano.2008.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005726293
    298 https://doi.org/10.1038/nnano.2008.149
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nnano.2008.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006813127
    301 https://doi.org/10.1038/nnano.2008.172
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nnano.2008.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032209533
    304 https://doi.org/10.1038/nnano.2008.215
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nnano.2008.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037486815
    307 https://doi.org/10.1038/nnano.2008.365
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/nnano.2008.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037553678
    310 https://doi.org/10.1038/nnano.2008.58
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/nnano.2010.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035301718
    313 https://doi.org/10.1038/nnano.2010.54
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/nnano.2012.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048019805
    316 https://doi.org/10.1038/nnano.2012.88
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nphoton.2010.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031313355
    319 https://doi.org/10.1038/nphoton.2010.186
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/nphoton.2010.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006827577
    322 https://doi.org/10.1038/nphoton.2010.40
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/nphoton.2013.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020219312
    325 https://doi.org/10.1038/nphoton.2013.240
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/nphoton.2013.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003444244
    328 https://doi.org/10.1038/nphoton.2013.253
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/nphys1420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011191271
    331 https://doi.org/10.1038/nphys1420
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/nphys1988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409071
    334 https://doi.org/10.1038/nphys1988
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/nphys935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024874242
    337 https://doi.org/10.1038/nphys935
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1557/mrs2000.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067967515
    340 https://doi.org/10.1557/mrs2000.151
    341 rdf:type schema:CreativeWork
    342 grid-institutes:grid.46072.37 schema:alternateName ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran
    343 schema:name ECE Department, Engineering Faculty, University of Tehran, Tehran, Iran
    344 rdf:type schema:Organization
    345 grid-institutes:grid.5037.1 schema:alternateName School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan. 22-26, Electrum 229, 16640, Kista, Sweden
    346 schema:name School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan. 22-26, Electrum 229, 16640, Kista, Sweden
    347 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...