Surface passivation of multicrystalline silicon wafers by porous silicon combined with an ultrathin nanoparticles aluminum coating film View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07-25

AUTHORS

Moez Salem, Mondher Ghrib, Brahim Bessais, Hussain Alawadhi, Mounir Gaidi

ABSTRACT

In this paper, we demonstrate that we may efficiently improve surface passivation of multi-crystalline silicon (mc-Si) while combining formation of porous silicon (PS) and deposition of ultrathin aluminum (Al) film. Aluminum Nanoparticles were deposited by thermal evaporation onto PS formed on mc-Si wafers. Optoelectronic properties of Al/PS/mc-Si and Al/mc-Si treated samples were investigated before and after annealing in the 400–700 °C temperature range. The surface passivation effectiveness was pointed out based on minority carrier lifetime and photoluminescence measurements. It was found that, at a minority carrier density Δn = 1015 cm−3, the effective minority carrier lifetime increases from 1.5 μs (for the bare mc-Si wafer) to about 6 and 14 μs before and after thermal annealing, respectively. FTIR analyses show strong correlation between the minority carrier lifetime values and hydrogen and Al passivation. Major beneficial effect of the co-presence of Al and Al–O on the optoelectronic properties is also demonstrated. The reflectivity of Al/PS treated mc-Si decrease significantly at 500 nm as compared to untreated mc-Si (from 31 % for untreated mc-Si wafers to 8 % for Al/PS treated ones), which is due to the roughly ordered structure and to the Al nanoparticles. More... »

PAGES

4326-4332

References to SciGraph publications

  • 2008-11. Inorganic mass spectrometry: Principles and applications in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10854-014-2169-7

    DOI

    http://dx.doi.org/10.1007/s10854-014-2169-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003374601


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de Photovolta\u00efque, Centre de Recherches et des Technologies de l\u2019Energie, Technopole de Borj-C\u00e9dria, BP 95, 2050, Hammam-Lif, Tunisia", 
              "id": "http://www.grid.ac/institutes/grid.463173.4", 
              "name": [
                "Laboratoire de Photovolta\u00efque, Centre de Recherches et des Technologies de l\u2019Energie, Technopole de Borj-C\u00e9dria, BP 95, 2050, Hammam-Lif, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salem", 
            "givenName": "Moez", 
            "id": "sg:person.011321015711.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321015711.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Photovolta\u00efque, Centre de Recherches et des Technologies de l\u2019Energie, Technopole de Borj-C\u00e9dria, BP 95, 2050, Hammam-Lif, Tunisia", 
              "id": "http://www.grid.ac/institutes/grid.463173.4", 
              "name": [
                "Laboratoire de Photovolta\u00efque, Centre de Recherches et des Technologies de l\u2019Energie, Technopole de Borj-C\u00e9dria, BP 95, 2050, Hammam-Lif, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghrib", 
            "givenName": "Mondher", 
            "id": "sg:person.013265057707.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013265057707.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Photovolta\u00efque, Centre de Recherches et des Technologies de l\u2019Energie, Technopole de Borj-C\u00e9dria, BP 95, 2050, Hammam-Lif, Tunisia", 
              "id": "http://www.grid.ac/institutes/grid.463173.4", 
              "name": [
                "Laboratoire de Photovolta\u00efque, Centre de Recherches et des Technologies de l\u2019Energie, Technopole de Borj-C\u00e9dria, BP 95, 2050, Hammam-Lif, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bessais", 
            "givenName": "Brahim", 
            "id": "sg:person.016252761707.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016252761707.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Applied Physics, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates", 
              "id": "http://www.grid.ac/institutes/grid.412789.1", 
              "name": [
                "Department of Applied Physics, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alawadhi", 
            "givenName": "Hussain", 
            "id": "sg:person.015310001601.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310001601.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Applied Physics, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates", 
              "id": "http://www.grid.ac/institutes/grid.412789.1", 
              "name": [
                "Laboratoire de Photovolta\u00efque, Centre de Recherches et des Technologies de l\u2019Energie, Technopole de Borj-C\u00e9dria, BP 95, 2050, Hammam-Lif, Tunisia", 
                "Department of Applied Physics, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gaidi", 
            "givenName": "Mounir", 
            "id": "sg:person.07616337355.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616337355.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1016/j.jasms.2008.07.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030006765", 
              "https://doi.org/10.1016/j.jasms.2008.07.008"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-07-25", 
        "datePublishedReg": "2014-07-25", 
        "description": "In this paper, we demonstrate that we may efficiently improve surface passivation of multi-crystalline silicon (mc-Si) while combining formation of porous silicon (PS) and deposition of ultrathin aluminum (Al) film. Aluminum Nanoparticles were deposited by thermal evaporation onto PS formed on mc-Si wafers. Optoelectronic properties of Al/PS/mc-Si and Al/mc-Si treated samples were investigated before and after annealing in the 400\u2013700\u00a0\u00b0C temperature range. The surface passivation effectiveness was pointed out based on minority carrier lifetime and photoluminescence measurements. It was found that, at a minority carrier density \u0394n\u00a0=\u00a01015\u00a0cm\u22123, the effective minority carrier lifetime increases from 1.5\u00a0\u03bcs (for the bare mc-Si wafer) to about 6 and 14\u00a0\u03bcs before and after thermal annealing, respectively. FTIR analyses show strong correlation between the minority carrier lifetime values and hydrogen and Al passivation. Major beneficial effect of the co-presence of Al and Al\u2013O on the optoelectronic properties is also demonstrated. The reflectivity of Al/PS treated mc-Si decrease significantly at 500\u00a0nm as compared to untreated mc-Si (from 31\u00a0% for untreated mc-Si wafers to 8\u00a0% for Al/PS treated ones), which is due to the roughly ordered structure and to the Al nanoparticles.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10854-014-2169-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136825", 
            "issn": [
              "0957-4522", 
              "1573-482X"
            ], 
            "name": "Journal of Materials Science: Materials in Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "keywords": [
          "mc-Si", 
          "minority carrier lifetime", 
          "porous silicon", 
          "surface passivation", 
          "mc-Si wafers", 
          "multi-crystalline silicon", 
          "effective minority carrier lifetime", 
          "multicrystalline silicon wafers", 
          "carrier lifetime", 
          "optoelectronic properties", 
          "minority carrier lifetime values", 
          "carrier lifetime values", 
          "coating film", 
          "passivation effectiveness", 
          "silicon wafers", 
          "thermal annealing", 
          "aluminum films", 
          "thermal evaporation", 
          "aluminum nanoparticles", 
          "Al nanoparticles", 
          "passivation", 
          "silicon", 
          "wafers", 
          "Al passivation", 
          "ultrathin aluminum films", 
          "films", 
          "FTIR analysis", 
          "temperature range", 
          "photoluminescence measurements", 
          "nanoparticles", 
          "properties", 
          "annealing", 
          "\u03bcs", 
          "evaporation", 
          "lifetime", 
          "reflectivity", 
          "hydrogen", 
          "deposition", 
          "al", 
          "measurements", 
          "structure", 
          "range", 
          "formation", 
          "values", 
          "effect", 
          "effectiveness", 
          "\u0394n", 
          "strong correlation", 
          "lifetime value", 
          "analysis", 
          "decrease", 
          "samples", 
          "correlation", 
          "beneficial effects", 
          "major beneficial effect", 
          "paper", 
          "Al/PS/mc-Si", 
          "PS/mc-Si", 
          "Al/mc-Si", 
          "surface passivation effectiveness", 
          "minority carrier density \u0394n", 
          "carrier density \u0394n", 
          "density \u0394n", 
          "Al/PS", 
          "mc-Si decrease", 
          "untreated mc-Si", 
          "ultrathin nanoparticles aluminum coating film", 
          "nanoparticles aluminum coating film", 
          "aluminum coating film"
        ], 
        "name": "Surface passivation of multicrystalline silicon wafers by porous silicon combined with an ultrathin nanoparticles aluminum coating film", 
        "pagination": "4326-4332", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003374601"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10854-014-2169-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10854-014-2169-7", 
          "https://app.dimensions.ai/details/publication/pub.1003374601"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_645.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10854-014-2169-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-014-2169-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-014-2169-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-014-2169-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-014-2169-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      22 PREDICATES      95 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10854-014-2169-7 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Na1070189d57347438882d5f56b4076cb
    4 schema:citation sg:pub.10.1016/j.jasms.2008.07.008
    5 schema:datePublished 2014-07-25
    6 schema:datePublishedReg 2014-07-25
    7 schema:description In this paper, we demonstrate that we may efficiently improve surface passivation of multi-crystalline silicon (mc-Si) while combining formation of porous silicon (PS) and deposition of ultrathin aluminum (Al) film. Aluminum Nanoparticles were deposited by thermal evaporation onto PS formed on mc-Si wafers. Optoelectronic properties of Al/PS/mc-Si and Al/mc-Si treated samples were investigated before and after annealing in the 400–700 °C temperature range. The surface passivation effectiveness was pointed out based on minority carrier lifetime and photoluminescence measurements. It was found that, at a minority carrier density Δn = 1015 cm−3, the effective minority carrier lifetime increases from 1.5 μs (for the bare mc-Si wafer) to about 6 and 14 μs before and after thermal annealing, respectively. FTIR analyses show strong correlation between the minority carrier lifetime values and hydrogen and Al passivation. Major beneficial effect of the co-presence of Al and Al–O on the optoelectronic properties is also demonstrated. The reflectivity of Al/PS treated mc-Si decrease significantly at 500 nm as compared to untreated mc-Si (from 31 % for untreated mc-Si wafers to 8 % for Al/PS treated ones), which is due to the roughly ordered structure and to the Al nanoparticles.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N90427f155f4f40b18197ba488900deed
    12 Nc380d55e10584dc7abf22ab0d74015a4
    13 sg:journal.1136825
    14 schema:keywords Al nanoparticles
    15 Al passivation
    16 Al/PS
    17 Al/PS/mc-Si
    18 Al/mc-Si
    19 FTIR analysis
    20 PS/mc-Si
    21 al
    22 aluminum coating film
    23 aluminum films
    24 aluminum nanoparticles
    25 analysis
    26 annealing
    27 beneficial effects
    28 carrier density Δn
    29 carrier lifetime
    30 carrier lifetime values
    31 coating film
    32 correlation
    33 decrease
    34 density Δn
    35 deposition
    36 effect
    37 effective minority carrier lifetime
    38 effectiveness
    39 evaporation
    40 films
    41 formation
    42 hydrogen
    43 lifetime
    44 lifetime value
    45 major beneficial effect
    46 mc-Si
    47 mc-Si decrease
    48 mc-Si wafers
    49 measurements
    50 minority carrier density Δn
    51 minority carrier lifetime
    52 minority carrier lifetime values
    53 multi-crystalline silicon
    54 multicrystalline silicon wafers
    55 nanoparticles
    56 nanoparticles aluminum coating film
    57 optoelectronic properties
    58 paper
    59 passivation
    60 passivation effectiveness
    61 photoluminescence measurements
    62 porous silicon
    63 properties
    64 range
    65 reflectivity
    66 samples
    67 silicon
    68 silicon wafers
    69 strong correlation
    70 structure
    71 surface passivation
    72 surface passivation effectiveness
    73 temperature range
    74 thermal annealing
    75 thermal evaporation
    76 ultrathin aluminum films
    77 ultrathin nanoparticles aluminum coating film
    78 untreated mc-Si
    79 values
    80 wafers
    81 Δn
    82 μs
    83 schema:name Surface passivation of multicrystalline silicon wafers by porous silicon combined with an ultrathin nanoparticles aluminum coating film
    84 schema:pagination 4326-4332
    85 schema:productId N1f62e2061c8e40dbbad353fc2ad930bc
    86 Nf4e5bfafb84d4f799726c098725034e6
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003374601
    88 https://doi.org/10.1007/s10854-014-2169-7
    89 schema:sdDatePublished 2022-01-01T18:34
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher Nb203d14e814741f091d31e239aa61417
    92 schema:url https://doi.org/10.1007/s10854-014-2169-7
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N1f62e2061c8e40dbbad353fc2ad930bc schema:name dimensions_id
    97 schema:value pub.1003374601
    98 rdf:type schema:PropertyValue
    99 N372d82dd20f741919c705e5866f19218 rdf:first sg:person.016252761707.25
    100 rdf:rest N4ea334dab1954c93b44c6688ba85d790
    101 N380a6f5cd2c34c818848a0517f4b6ac4 rdf:first sg:person.07616337355.53
    102 rdf:rest rdf:nil
    103 N4ea334dab1954c93b44c6688ba85d790 rdf:first sg:person.015310001601.85
    104 rdf:rest N380a6f5cd2c34c818848a0517f4b6ac4
    105 N723960f17537444cad277e0534e93822 rdf:first sg:person.013265057707.79
    106 rdf:rest N372d82dd20f741919c705e5866f19218
    107 N90427f155f4f40b18197ba488900deed schema:volumeNumber 25
    108 rdf:type schema:PublicationVolume
    109 Na1070189d57347438882d5f56b4076cb rdf:first sg:person.011321015711.07
    110 rdf:rest N723960f17537444cad277e0534e93822
    111 Nb203d14e814741f091d31e239aa61417 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 Nc380d55e10584dc7abf22ab0d74015a4 schema:issueNumber 10
    114 rdf:type schema:PublicationIssue
    115 Nf4e5bfafb84d4f799726c098725034e6 schema:name doi
    116 schema:value 10.1007/s10854-014-2169-7
    117 rdf:type schema:PropertyValue
    118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Engineering
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Materials Engineering
    123 rdf:type schema:DefinedTerm
    124 sg:journal.1136825 schema:issn 0957-4522
    125 1573-482X
    126 schema:name Journal of Materials Science: Materials in Electronics
    127 schema:publisher Springer Nature
    128 rdf:type schema:Periodical
    129 sg:person.011321015711.07 schema:affiliation grid-institutes:grid.463173.4
    130 schema:familyName Salem
    131 schema:givenName Moez
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321015711.07
    133 rdf:type schema:Person
    134 sg:person.013265057707.79 schema:affiliation grid-institutes:grid.463173.4
    135 schema:familyName Ghrib
    136 schema:givenName Mondher
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013265057707.79
    138 rdf:type schema:Person
    139 sg:person.015310001601.85 schema:affiliation grid-institutes:grid.412789.1
    140 schema:familyName Alawadhi
    141 schema:givenName Hussain
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310001601.85
    143 rdf:type schema:Person
    144 sg:person.016252761707.25 schema:affiliation grid-institutes:grid.463173.4
    145 schema:familyName Bessais
    146 schema:givenName Brahim
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016252761707.25
    148 rdf:type schema:Person
    149 sg:person.07616337355.53 schema:affiliation grid-institutes:grid.412789.1
    150 schema:familyName Gaidi
    151 schema:givenName Mounir
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616337355.53
    153 rdf:type schema:Person
    154 sg:pub.10.1016/j.jasms.2008.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030006765
    155 https://doi.org/10.1016/j.jasms.2008.07.008
    156 rdf:type schema:CreativeWork
    157 grid-institutes:grid.412789.1 schema:alternateName Department of Applied Physics, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
    158 schema:name Department of Applied Physics, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
    159 Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050, Hammam-Lif, Tunisia
    160 rdf:type schema:Organization
    161 grid-institutes:grid.463173.4 schema:alternateName Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050, Hammam-Lif, Tunisia
    162 schema:name Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050, Hammam-Lif, Tunisia
    163 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...