Low-temperature growth of well-aligned ZnO nanowire arrays by chemical bath deposition for hybrid solar cell application View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

Zhaolin Yuan

ABSTRACT

Well-aligned ZnO nanowire arrays were grown on indium tin oxide coated glass substrates by a facile chemical bath deposition technique. Morphologies, crystalline structure and optical transmission were investigated by field-emission scanning electron microscope, X-ray diffraction and UV–visible transmission spectrum, respectively. The results showed that ZnO nanowires were aligned in a dense array approximately perpendicular to substrate surface, they were wurtzite-structured (hexagonal) ZnO. In addition, the nanowire arrays exhibited high optical transmission (>85 %) in the visible region. Furthermore, an inverted inorganic/polymer hybrid solar cell was built using as-grown well-aligned ZnO nanowire arrays as inorganic layer, under the AM 1.5 illumination with a light intensity of 80 mW/cm2, the device showed an open circuit voltage (Voc) of 0.44 V, a short circuit current (Jsc) of 3.23 mA/cm2, a fill-factor of 38 %, and a power conversion efficiency of 0.68 %. More... »

PAGES

2248-2252

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-014-1866-6

DOI

http://dx.doi.org/10.1007/s10854-014-1866-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013179399


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shaanxi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412500.2", 
          "name": [
            "School of Physics and Electronic Information Engineering, Shaanxi University of Technology, 723001, Hanzhong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Zhaolin", 
        "id": "sg:person.07476671443.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476671443.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200901108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000820884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200901108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000820884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001081505", 
          "https://doi.org/10.1038/nature06601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3026741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001982989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1139366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003085426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-011-6756-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003109868", 
          "https://doi.org/10.1007/s00339-011-6756-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2006.10.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004213349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070430o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004308851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070430o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004308851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0452599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005252378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0452599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005252378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201003221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006082521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201003221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006082521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2012.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010006607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl050788p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010380228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl050788p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010380228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.synthmet.2013.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010803878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070111x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012286309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070111x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012286309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b816619f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012536605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/18/35/355606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015339605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2010.09.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017338161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b917525c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028979463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b917525c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028979463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-008-9698-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029210881", 
          "https://doi.org/10.1007/s10854-008-9698-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-011-0353-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031173309", 
          "https://doi.org/10.1007/s10854-011-0353-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1060367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032543227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200902172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033359269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b205384e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033712779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200600024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037857029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200800541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038449240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040787360", 
          "https://doi.org/10.1038/nmat1387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040787360", 
          "https://doi.org/10.1038/nmat1387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200305729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043228620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2012.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046350007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2009.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046537977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/49/495502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048256997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/49/495502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048256997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-7-517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048487982", 
          "https://doi.org/10.1186/1556-276x-7-517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp071418n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056071152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp071418n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056071152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0757816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056073842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0757816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056073842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp800106v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056106589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp800106v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056106589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1836873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057825867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2174093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057842840"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "Well-aligned ZnO nanowire arrays were grown on indium tin oxide coated glass substrates by a facile chemical bath deposition technique. Morphologies, crystalline structure and optical transmission were investigated by field-emission scanning electron microscope, X-ray diffraction and UV\u2013visible transmission spectrum, respectively. The results showed that ZnO nanowires were aligned in a dense array approximately perpendicular to substrate surface, they were wurtzite-structured (hexagonal) ZnO. In addition, the nanowire arrays exhibited high optical transmission (>85 %) in the visible region. Furthermore, an inverted inorganic/polymer hybrid solar cell was built using as-grown well-aligned ZnO nanowire arrays as inorganic layer, under the AM 1.5 illumination with a light intensity of 80 mW/cm2, the device showed an open circuit voltage (Voc) of 0.44 V, a short circuit current (Jsc) of 3.23 mA/cm2, a fill-factor of 38 %, and a power conversion efficiency of 0.68 %.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10854-014-1866-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7179805", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Low-temperature growth of well-aligned ZnO nanowire arrays by chemical bath deposition for hybrid solar cell application", 
    "pagination": "2248-2252", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ec863d6de68bfb3d3767296588df9216dd58939f7dd8fd5555238bfe08331b6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-014-1866-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013179399"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-014-1866-6", 
      "https://app.dimensions.ai/details/publication/pub.1013179399"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10854-014-1866-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-014-1866-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-014-1866-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-014-1866-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-014-1866-6'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-014-1866-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nca84920d79344891aadd83348b56a0af
4 schema:citation sg:pub.10.1007/s00339-011-6756-7
5 sg:pub.10.1007/s10854-008-9698-x
6 sg:pub.10.1007/s10854-011-0353-6
7 sg:pub.10.1038/nature06601
8 sg:pub.10.1038/nmat1387
9 sg:pub.10.1186/1556-276x-7-517
10 https://doi.org/10.1002/adfm.200600024
11 https://doi.org/10.1002/adfm.200800541
12 https://doi.org/10.1002/adma.200305729
13 https://doi.org/10.1002/adma.200901108
14 https://doi.org/10.1002/adma.200902172
15 https://doi.org/10.1002/adma.201003221
16 https://doi.org/10.1016/j.cap.2012.03.011
17 https://doi.org/10.1016/j.jallcom.2006.10.076
18 https://doi.org/10.1016/j.physe.2012.12.011
19 https://doi.org/10.1016/j.solmat.2009.09.012
20 https://doi.org/10.1016/j.solmat.2010.09.037
21 https://doi.org/10.1016/j.synthmet.2013.09.036
22 https://doi.org/10.1021/jp0452599
23 https://doi.org/10.1021/jp071418n
24 https://doi.org/10.1021/jp0757816
25 https://doi.org/10.1021/jp800106v
26 https://doi.org/10.1021/nl050788p
27 https://doi.org/10.1021/nl070111x
28 https://doi.org/10.1021/nl070430o
29 https://doi.org/10.1039/b205384e
30 https://doi.org/10.1039/b816619f
31 https://doi.org/10.1039/b917525c
32 https://doi.org/10.1063/1.1836873
33 https://doi.org/10.1063/1.2174093
34 https://doi.org/10.1063/1.3026741
35 https://doi.org/10.1088/0957-4484/18/35/355606
36 https://doi.org/10.1088/0957-4484/21/49/495502
37 https://doi.org/10.1126/science.1060367
38 https://doi.org/10.1126/science.1139366
39 schema:datePublished 2014-05
40 schema:datePublishedReg 2014-05-01
41 schema:description Well-aligned ZnO nanowire arrays were grown on indium tin oxide coated glass substrates by a facile chemical bath deposition technique. Morphologies, crystalline structure and optical transmission were investigated by field-emission scanning electron microscope, X-ray diffraction and UV–visible transmission spectrum, respectively. The results showed that ZnO nanowires were aligned in a dense array approximately perpendicular to substrate surface, they were wurtzite-structured (hexagonal) ZnO. In addition, the nanowire arrays exhibited high optical transmission (>85 %) in the visible region. Furthermore, an inverted inorganic/polymer hybrid solar cell was built using as-grown well-aligned ZnO nanowire arrays as inorganic layer, under the AM 1.5 illumination with a light intensity of 80 mW/cm2, the device showed an open circuit voltage (Voc) of 0.44 V, a short circuit current (Jsc) of 3.23 mA/cm2, a fill-factor of 38 %, and a power conversion efficiency of 0.68 %.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N24d6a2dabc274559bd55b2faed35370f
46 N983d4f99ea364509a7d4363a7b7564fc
47 sg:journal.1136825
48 schema:name Low-temperature growth of well-aligned ZnO nanowire arrays by chemical bath deposition for hybrid solar cell application
49 schema:pagination 2248-2252
50 schema:productId N0ce7a449688e407b83e33e5bec03b542
51 N1a4f210c658948e38287c14801eede26
52 Nd3e691763dc541c4b83490950f0b7e49
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013179399
54 https://doi.org/10.1007/s10854-014-1866-6
55 schema:sdDatePublished 2019-04-10T23:24
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N3a33a3594b844c7f8ec38ceee0730404
58 schema:url http://link.springer.com/10.1007%2Fs10854-014-1866-6
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0ce7a449688e407b83e33e5bec03b542 schema:name readcube_id
63 schema:value 3ec863d6de68bfb3d3767296588df9216dd58939f7dd8fd5555238bfe08331b6
64 rdf:type schema:PropertyValue
65 N1a4f210c658948e38287c14801eede26 schema:name dimensions_id
66 schema:value pub.1013179399
67 rdf:type schema:PropertyValue
68 N24d6a2dabc274559bd55b2faed35370f schema:volumeNumber 25
69 rdf:type schema:PublicationVolume
70 N3a33a3594b844c7f8ec38ceee0730404 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N983d4f99ea364509a7d4363a7b7564fc schema:issueNumber 5
73 rdf:type schema:PublicationIssue
74 Nca84920d79344891aadd83348b56a0af rdf:first sg:person.07476671443.24
75 rdf:rest rdf:nil
76 Nd3e691763dc541c4b83490950f0b7e49 schema:name doi
77 schema:value 10.1007/s10854-014-1866-6
78 rdf:type schema:PropertyValue
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
83 schema:name Materials Engineering
84 rdf:type schema:DefinedTerm
85 sg:grant.7179805 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-014-1866-6
86 rdf:type schema:MonetaryGrant
87 sg:journal.1136825 schema:issn 0957-4522
88 1573-482X
89 schema:name Journal of Materials Science: Materials in Electronics
90 rdf:type schema:Periodical
91 sg:person.07476671443.24 schema:affiliation https://www.grid.ac/institutes/grid.412500.2
92 schema:familyName Yuan
93 schema:givenName Zhaolin
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476671443.24
95 rdf:type schema:Person
96 sg:pub.10.1007/s00339-011-6756-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003109868
97 https://doi.org/10.1007/s00339-011-6756-7
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10854-008-9698-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029210881
100 https://doi.org/10.1007/s10854-008-9698-x
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10854-011-0353-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031173309
103 https://doi.org/10.1007/s10854-011-0353-6
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nature06601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001081505
106 https://doi.org/10.1038/nature06601
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/nmat1387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040787360
109 https://doi.org/10.1038/nmat1387
110 rdf:type schema:CreativeWork
111 sg:pub.10.1186/1556-276x-7-517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048487982
112 https://doi.org/10.1186/1556-276x-7-517
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/adfm.200600024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037857029
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/adfm.200800541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038449240
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/adma.200305729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043228620
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/adma.200901108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000820884
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/adma.200902172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033359269
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/adma.201003221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006082521
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cap.2012.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010006607
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jallcom.2006.10.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004213349
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.physe.2012.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046350007
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.solmat.2009.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046537977
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.solmat.2010.09.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017338161
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.synthmet.2013.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010803878
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/jp0452599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005252378
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1021/jp071418n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056071152
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1021/jp0757816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056073842
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1021/jp800106v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056106589
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1021/nl050788p schema:sameAs https://app.dimensions.ai/details/publication/pub.1010380228
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/nl070111x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012286309
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/nl070430o schema:sameAs https://app.dimensions.ai/details/publication/pub.1004308851
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1039/b205384e schema:sameAs https://app.dimensions.ai/details/publication/pub.1033712779
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1039/b816619f schema:sameAs https://app.dimensions.ai/details/publication/pub.1012536605
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1039/b917525c schema:sameAs https://app.dimensions.ai/details/publication/pub.1028979463
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.1836873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057825867
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1063/1.2174093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057842840
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1063/1.3026741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001982989
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/0957-4484/18/35/355606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015339605
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0957-4484/21/49/495502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048256997
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1060367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032543227
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.1139366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003085426
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.412500.2 schema:alternateName Shaanxi University of Technology
173 schema:name School of Physics and Electronic Information Engineering, Shaanxi University of Technology, 723001, Hanzhong, People’s Republic of China
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...