Study on creep characterization of nano-sized Ag particle-reinforced Sn–Pb composte solder joints View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-04-28

AUTHORS

Yaowu Shi, Jianping Liu, Zhidong Xia, Yongping Lei, Fu Guo, Xiaoyan Li

ABSTRACT

In the present work, the creep strain of solder joints is measured using a stepped load creep test on a single specimen. Based on the experimental results, the constitutive model on the steady-state creep strain is established by applying a linear curve fitting for the nano-sized Ag particle-reinforced Sn37Pb based composite solder joint and the Sn37Pb solder joint, respectively. It is indicated that the activation energy of the Ag particle-reinforced Sn37Pb based composite solder joints is higher than that of Sn37Pb solder joints. It is expected that the creep resistance of the Ag particle-reinforced Sn37Pb based composite solder joints is superior to that of Sn37Pb solder. More... »

PAGES

256-261

References to SciGraph publications

  • 2007-05-16. Understanding the Influence of Copper Nanoparticles on Thermal Characteristics and Microstructural Development of a Tin-Silver Solder in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 1990-11. Superplastic creep of eutectic tinlead solder joints in JOURNAL OF ELECTRONIC MATERIALS
  • 1992-04. Superplastic creep of low melting point solder joints in JOURNAL OF ELECTRONIC MATERIALS
  • 2005-11. Development of nano-composite lead-free electronic solders in JOURNAL OF ELECTRONIC MATERIALS
  • 1988-03. A microstructural study of the thermal fatigue failures of 60sn-40Pb solder joints in JOURNAL OF ELECTRONIC MATERIALS
  • 1999-01. The creep behavior of In-Ag eutectic solder joints in JOURNAL OF ELECTRONIC MATERIALS
  • 2007-06-09. Creep property of composite solders reinforced by nano-sized particles in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 1995-10. Stress relaxation behavior of eutectic tin-lead solder in JOURNAL OF ELECTRONIC MATERIALS
  • 2004-09. Development of creep-resistant, nanosized Ag particle-reinforced Sn-Pb composite solders in JOURNAL OF ELECTRONIC MATERIALS
  • 1998-11. New, creep-resistant, low melting point solders with ultrafine oxide dispersions in JOURNAL OF ELECTRONIC MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10854-009-9902-7

    DOI

    http://dx.doi.org/10.1007/s10854-009-9902-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002656867


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Yaowu", 
            "id": "sg:person.010147557037.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Jianping", 
            "id": "sg:person.012406632313.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406632313.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xia", 
            "givenName": "Zhidong", 
            "id": "sg:person.016447555263.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lei", 
            "givenName": "Yongping", 
            "id": "sg:person.012521025203.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Fu", 
            "id": "sg:person.014627203474.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xiaoyan", 
            "id": "sg:person.014361463331.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361463331.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11664-004-0022-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031994706", 
              "https://doi.org/10.1007/s11664-004-0022-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11664-999-0197-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051963888", 
              "https://doi.org/10.1007/s11664-999-0197-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02655466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051437767", 
              "https://doi.org/10.1007/bf02655466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11664-005-0197-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038707430", 
              "https://doi.org/10.1007/s11664-005-0197-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02673342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010073335", 
              "https://doi.org/10.1007/bf02673342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-007-9092-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023954989", 
              "https://doi.org/10.1007/s11665-007-9092-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02652148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039926320", 
              "https://doi.org/10.1007/bf02652148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02660403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030013460", 
              "https://doi.org/10.1007/bf02660403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11664-998-0072-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009785954", 
              "https://doi.org/10.1007/s11664-998-0072-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-007-9327-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052964782", 
              "https://doi.org/10.1007/s10854-007-9327-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-04-28", 
        "datePublishedReg": "2009-04-28", 
        "description": "In the present work, the creep strain of solder joints is measured using a stepped load creep test on a single specimen. Based on the experimental results, the constitutive model on the steady-state creep strain is established by applying a linear curve fitting for the nano-sized Ag particle-reinforced Sn37Pb based composite solder joint and the Sn37Pb solder joint, respectively. It is indicated that the activation energy of the Ag particle-reinforced Sn37Pb based composite solder joints is higher than that of Sn37Pb solder joints. It is expected that the creep resistance of the Ag particle-reinforced Sn37Pb based composite solder joints is superior to that of Sn37Pb solder.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10854-009-9902-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4984596", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136825", 
            "issn": [
              "0957-4522", 
              "1573-482X"
            ], 
            "name": "Journal of Materials Science: Materials in Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "composite solder joints", 
          "Sn37Pb solder joint", 
          "solder joints", 
          "creep strain", 
          "steady-state creep strain", 
          "load creep tests", 
          "creep characterization", 
          "creep resistance", 
          "constitutive model", 
          "Sn37Pb solder", 
          "creep tests", 
          "Sn37Pb", 
          "joints", 
          "experimental results", 
          "present work", 
          "activation energy", 
          "solder", 
          "linear curve", 
          "specimen", 
          "energy", 
          "resistance", 
          "strains", 
          "characterization", 
          "work", 
          "test", 
          "model", 
          "curves", 
          "results", 
          "single specimen", 
          "nano-sized Ag particle-reinforced Sn37Pb", 
          "Ag particle-reinforced Sn37Pb", 
          "particle-reinforced Sn37Pb", 
          "nano-sized Ag particle-reinforced Sn\u2013Pb composte solder joints", 
          "Ag particle-reinforced Sn\u2013Pb composte solder joints", 
          "particle-reinforced Sn\u2013Pb composte solder joints", 
          "Sn\u2013Pb composte solder joints", 
          "composte solder joints"
        ], 
        "name": "Study on creep characterization of nano-sized Ag particle-reinforced Sn\u2013Pb composte solder joints", 
        "pagination": "256-261", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002656867"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10854-009-9902-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10854-009-9902-7", 
          "https://app.dimensions.ai/details/publication/pub.1002656867"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_480.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10854-009-9902-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-009-9902-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-009-9902-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-009-9902-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-009-9902-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      22 PREDICATES      72 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10854-009-9902-7 schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author N1ae0af13cb4a4681a9ee7616fee96e62
    4 schema:citation sg:pub.10.1007/bf02652148
    5 sg:pub.10.1007/bf02655466
    6 sg:pub.10.1007/bf02660403
    7 sg:pub.10.1007/bf02673342
    8 sg:pub.10.1007/s10854-007-9327-0
    9 sg:pub.10.1007/s11664-004-0022-0
    10 sg:pub.10.1007/s11664-005-0197-z
    11 sg:pub.10.1007/s11664-998-0072-9
    12 sg:pub.10.1007/s11664-999-0197-5
    13 sg:pub.10.1007/s11665-007-9092-5
    14 schema:datePublished 2009-04-28
    15 schema:datePublishedReg 2009-04-28
    16 schema:description In the present work, the creep strain of solder joints is measured using a stepped load creep test on a single specimen. Based on the experimental results, the constitutive model on the steady-state creep strain is established by applying a linear curve fitting for the nano-sized Ag particle-reinforced Sn37Pb based composite solder joint and the Sn37Pb solder joint, respectively. It is indicated that the activation energy of the Ag particle-reinforced Sn37Pb based composite solder joints is higher than that of Sn37Pb solder joints. It is expected that the creep resistance of the Ag particle-reinforced Sn37Pb based composite solder joints is superior to that of Sn37Pb solder.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N1af2c1dcd5bb4f389fc9d0c769d656d7
    21 N612fde298b7143b0bb432827915ac67b
    22 sg:journal.1136825
    23 schema:keywords Ag particle-reinforced Sn37Pb
    24 Ag particle-reinforced Sn–Pb composte solder joints
    25 Sn37Pb
    26 Sn37Pb solder
    27 Sn37Pb solder joint
    28 Sn–Pb composte solder joints
    29 activation energy
    30 characterization
    31 composite solder joints
    32 composte solder joints
    33 constitutive model
    34 creep characterization
    35 creep resistance
    36 creep strain
    37 creep tests
    38 curves
    39 energy
    40 experimental results
    41 joints
    42 linear curve
    43 load creep tests
    44 model
    45 nano-sized Ag particle-reinforced Sn37Pb
    46 nano-sized Ag particle-reinforced Sn–Pb composte solder joints
    47 particle-reinforced Sn37Pb
    48 particle-reinforced Sn–Pb composte solder joints
    49 present work
    50 resistance
    51 results
    52 single specimen
    53 solder
    54 solder joints
    55 specimen
    56 steady-state creep strain
    57 strains
    58 test
    59 work
    60 schema:name Study on creep characterization of nano-sized Ag particle-reinforced Sn–Pb composte solder joints
    61 schema:pagination 256-261
    62 schema:productId N8e25ba88ab4d4f128a69efbe881f5cad
    63 Ndfc5b75dcb784d61a37bbc67809533c3
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002656867
    65 https://doi.org/10.1007/s10854-009-9902-7
    66 schema:sdDatePublished 2021-11-01T18:12
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher N764ced3867764a29b0f32b31d5fcb0b4
    69 schema:url https://doi.org/10.1007/s10854-009-9902-7
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N1ae0af13cb4a4681a9ee7616fee96e62 rdf:first sg:person.010147557037.66
    74 rdf:rest Nba5acc11b63142b9ba50911454d4b909
    75 N1af2c1dcd5bb4f389fc9d0c769d656d7 schema:volumeNumber 21
    76 rdf:type schema:PublicationVolume
    77 N3b2fcbc45c0d4e69b7cbc08b77778acd rdf:first sg:person.014627203474.59
    78 rdf:rest Nc4dcf8678d1a40d3bbf031663b893755
    79 N612fde298b7143b0bb432827915ac67b schema:issueNumber 3
    80 rdf:type schema:PublicationIssue
    81 N6e6952e607ef42d0a07870a6162fb33a rdf:first sg:person.012521025203.12
    82 rdf:rest N3b2fcbc45c0d4e69b7cbc08b77778acd
    83 N764ced3867764a29b0f32b31d5fcb0b4 schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N8e25ba88ab4d4f128a69efbe881f5cad schema:name doi
    86 schema:value 10.1007/s10854-009-9902-7
    87 rdf:type schema:PropertyValue
    88 Nba5acc11b63142b9ba50911454d4b909 rdf:first sg:person.012406632313.23
    89 rdf:rest Ned32c7b901b8481dbd291fc425e4076b
    90 Nc4dcf8678d1a40d3bbf031663b893755 rdf:first sg:person.014361463331.82
    91 rdf:rest rdf:nil
    92 Ndfc5b75dcb784d61a37bbc67809533c3 schema:name dimensions_id
    93 schema:value pub.1002656867
    94 rdf:type schema:PropertyValue
    95 Ned32c7b901b8481dbd291fc425e4076b rdf:first sg:person.016447555263.38
    96 rdf:rest N6e6952e607ef42d0a07870a6162fb33a
    97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Engineering
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Civil Engineering
    102 rdf:type schema:DefinedTerm
    103 sg:grant.4984596 http://pending.schema.org/fundedItem sg:pub.10.1007/s10854-009-9902-7
    104 rdf:type schema:MonetaryGrant
    105 sg:journal.1136825 schema:issn 0957-4522
    106 1573-482X
    107 schema:name Journal of Materials Science: Materials in Electronics
    108 schema:publisher Springer Nature
    109 rdf:type schema:Periodical
    110 sg:person.010147557037.66 schema:affiliation grid-institutes:grid.28703.3e
    111 schema:familyName Shi
    112 schema:givenName Yaowu
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66
    114 rdf:type schema:Person
    115 sg:person.012406632313.23 schema:affiliation grid-institutes:grid.28703.3e
    116 schema:familyName Liu
    117 schema:givenName Jianping
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406632313.23
    119 rdf:type schema:Person
    120 sg:person.012521025203.12 schema:affiliation grid-institutes:grid.28703.3e
    121 schema:familyName Lei
    122 schema:givenName Yongping
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12
    124 rdf:type schema:Person
    125 sg:person.014361463331.82 schema:affiliation grid-institutes:grid.28703.3e
    126 schema:familyName Li
    127 schema:givenName Xiaoyan
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361463331.82
    129 rdf:type schema:Person
    130 sg:person.014627203474.59 schema:affiliation grid-institutes:grid.28703.3e
    131 schema:familyName Guo
    132 schema:givenName Fu
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59
    134 rdf:type schema:Person
    135 sg:person.016447555263.38 schema:affiliation grid-institutes:grid.28703.3e
    136 schema:familyName Xia
    137 schema:givenName Zhidong
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38
    139 rdf:type schema:Person
    140 sg:pub.10.1007/bf02652148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039926320
    141 https://doi.org/10.1007/bf02652148
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf02655466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051437767
    144 https://doi.org/10.1007/bf02655466
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf02660403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030013460
    147 https://doi.org/10.1007/bf02660403
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf02673342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010073335
    150 https://doi.org/10.1007/bf02673342
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10854-007-9327-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052964782
    153 https://doi.org/10.1007/s10854-007-9327-0
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s11664-004-0022-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031994706
    156 https://doi.org/10.1007/s11664-004-0022-0
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s11664-005-0197-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038707430
    159 https://doi.org/10.1007/s11664-005-0197-z
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11664-998-0072-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009785954
    162 https://doi.org/10.1007/s11664-998-0072-9
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s11664-999-0197-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051963888
    165 https://doi.org/10.1007/s11664-999-0197-5
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11665-007-9092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023954989
    168 https://doi.org/10.1007/s11665-007-9092-5
    169 rdf:type schema:CreativeWork
    170 grid-institutes:grid.28703.3e schema:alternateName School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China
    171 schema:name School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, China
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...